优质解答
2月14日 星期六 晴
今天又是一个阳光明媚的日子,我在大街上闲逛,突然看到不远处有很多人围在一起.我跑过去一年,原来是抓奖游戏.“哼,抓奖有什么好玩的.”我厌烦地说旁边的人一听,连忙说:“抓奖虽不好玩,但有重奖,可吸引人了.”我急切地问:“是什么呀!”“50元钱.”那人噔大眼睛说.一听这话,我可来劲了,“这么诱人的的奖品,说什么,我也得试试.”说完,我便问店主怎么抓法.店主说:“这是24个麻将,麻将下写着12个5,12个10,每次只可抓12 个麻将,如果12个麻将标的数总和为60,那么你便可得50元大奖.”我听了也没多卷起了袖子,从兜里掏出5元钱给了店主.
尽管,这可以抓10次,但那份大奖我还是没有拿到.
回到家之后,我想了想,感觉有点不对劲.我想,抓60分,那必须抓得那12个麻将必须都标5,最好的情况就是第1次抓到1个5,第2次抓2个5,第3次抓3个5……第12次抓12个5至少得花去6元钱.但万一抓得那些麻将标的数是10或有的总和是相同的,那么得抓多少次花多少钱.
最后经过一番考虑,终于把问题弄清了,我抓紧到街上找那算帐,可已经跑得无影无踪.
2月28日 星期六 晴
今天我在看报纸的时候看见了这样一个题目:求圆锥的表面积.
[题目]一个圆锥,底面直径是6米,圆锥的顶点到底面圆周上任点长是5米,求这个圆锥的表面积.
我虽没有学习过求圆锥的表面积,但已经学习过圆柱的表面积,通过圆柱的表面积的解题方法知道:圆柱的表面积等于一个侧面加上两个底面积,而圆锥的表面积就是一个侧面积加上一个底面积,侧面是一个扇形,我虽没学过但我查了资料知道求扇形的面积是:扇形的面积=弧长×圆半径×1/2,题目中已经告诉了我们圆锥顶点到底面圆周上任一点长是5米,而弧长是3.14×6=18.84(米),扇形面积是18.84×5×1/2=47.1(平方米),最后用扇形面积加上底面积,就得到圆锥的表面积:47.1+3.14×(6/2)×(6/2)=75.36(平方米).
数学是思维的体操,我们只要勤学善思,就一定会攻克难题,走上成功之路!
3月2日星期二
每逢清明节,巨山上便会人山人海,于是一些骗子便想出了一些骗人的把戏来骗人,比如:像圆盘赌物.
道具非常简单,在一块木板上画一个大圆,大圆中心用钉子固定一根可以转动的指针.大圆被分成24个相等的格,格内的针可以转,格内分别写着1—24个相等的数,在单数格中没有值钱的,而双数中差不多都是值钱的.
玩法也很简单,把指针先拨到1,然后你拨动指针,指针就开始旋转,最后停在某个格内,接着再按着指针所在的格上标的数,再把指针拨动,N-1格,N是格子上所标的数.
这只不过是一个小小的数学游戏,其实你无论拨到哪格,只能吃亏,不能得利.因为当指针转到奇数格上,拨动的格数便是奇数-1=偶数,奇数+偶数只等于奇数,所以不可能转到偶数格上,就得不到值钱的东西,假如指针转到偶数格上,拨动的格数便是偶数-1=奇数,奇数+偶数=奇数,还不能得到值钱的东西.
5月12日 星期五
算工钱
中午爸爸下班回来,哼着小调,兴高采烈地跨进家门我迎上去问道:“爸爸,今天有什么事这么高兴?”爸爸说:“这个月我涨工资了.”我问道:“那你现在一个月拿多少工资?”爸爸想了想,微微一笑说:“我比你妈的工资高,我俩的月工资加起来是2800元,月工资差是100元,你说我一个月拿多少工资?”
听了爸爸的话,我动手在纸上画出了线段图帮助我理
通过观察和思考,我很快算出了答案,并且告诉爸爸.首先把妈妈的工资看作和爸爸同样多,那么爸爸、妈妈的月工资一共是(2800+100)=2900元,再把月工资和平均分成2份,求出的1份就是爸爸的月工资.列式是:(2800+100)÷2=1450元.
爸爸听了,满意地直点头.这时,正在做饭的妈妈对我说:“你还有其它方法吗?”“还有其它方法?”我惊奇地说.我报着好奇的心情静下心来再次观察、思考,我发现此题关键是找出以谁作标准的问题,标准不同,方法也就不同.于是,我有了第二种方法:就是以妈妈的工资作标准,假设爸爸和妈妈的工资同样多,那么俩人的月工资和就是(2800-100)=2700元,再把月工资和平均分成2份,求出的1份就是妈妈的月工资最后加上爸爸比妈妈多的100元,就是爸爸的月工资.列式为(2800-100)÷2+100=1450元
6月28日 周二
今天中午,我正在做数学暑假作业.写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所以然,这道题是这样的:
有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数.求它的体积.
我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示.这可怎么入手啊!
正当我急得抓耳挠腮之际,我妈妈的一个同事来了.他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉.于是,他又教我另一种方法:先列出数,再逐一排除.我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字.这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条
棱长(且长度都为质数)之和.于是,我开始分辩这两个数各是哪个数.
最后,我得到了结果,为374立方厘米.我的算式是:209=11×19 19=2+17 11×2×17=374(立方厘米)、
今天,老师给我们出了一道很复杂的算式,后来,经过与同学们一番激烈的唇枪舌战,终于把这道算式给 “正法”了.
题目如下:“123456789×( )+( )=98765432”,老师一写在黑板上,我就开始琢磨起来.天哪,这道题也太复杂了吧,光这么长的数字就看得人头晕,要是一个个去试,该算到什么时候呀?我没看错吧!是坐以待毙,还是迎难而上?我环视了一下四周,见大家都在忙活着,我总不能闲着吧?我的脑筋开始高速运转起来.
我先用复杂的方法来破解.于是,我就开始仔细地思考,什么数与9乘等于最后一位有“1”呢?“啊!我想到了是 “9”,9乘9不就等于81吗?最后一位就是“1”.这么简单!是我聪明过人吧.终于让我想到了,我兴奋地快要哭了,下面应该是……正当我思路开阔、灵感迸发时,被广播操的音乐给打乱了思绪,我的脑海里一片空白,我的心里就像蒙了一片荒漠,什么也记不得了.“唉!煮熟的天鹅又给飞走了.”我伤心地感叹道.可我不死心,在位置上拼命地思考着,可就算我抓破头破,还是理不出头绪来.俗话说“三个臭皮匠,顶个诸葛亮”.于是,我决定豁出这张脸皮去请教别人.我来到了大名鼎鼎的邵月辉那里.让我意想不到的事情是,原来他也深陷这道题当中,正在与别人讨论着呢.我就上前与他们一起讨论了起来.邵月辉似乎信心不足,低声地说:“我觉得第一个括号里应该填1,第二个括号里用987654321减123456789的差就行了吗?”我拍了拍后脑勺,尖叫道:“对呀!我真是糊涂呀”!可我又冷静地想了想,这题括号那么小,不可能填像糖葫芦似的那么多数字.肯定没这么简单!可该怎么算呢?我们又犯难了?
6月28日 周二
今天中午,我正在做数学暑假作业.写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所以然,这道题是这样的:
有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数.求它的体积.
我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示.这可怎么入手啊!
正当我急得抓耳挠腮之际,我妈妈的一个同事来了.他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉.于是,他又教我另一种方法:先列出数,再逐一排除.我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字.这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条
棱长(且长度都为质数)之和.于是,我开始分辩这两个数各是哪个数.
最后,我得到了结果,为374立方厘米.我的算式是:209=11×19 19=2+17 11×2×17=374(立方厘米)
后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样.
解出这道题后,我心里比谁都高兴.我还明白了一个道理:数学充满了奥秘,等待着我们去探求.
2月14日 星期六 晴
今天又是一个阳光明媚的日子,我在大街上闲逛,突然看到不远处有很多人围在一起.我跑过去一年,原来是抓奖游戏.“哼,抓奖有什么好玩的.”我厌烦地说旁边的人一听,连忙说:“抓奖虽不好玩,但有重奖,可吸引人了.”我急切地问:“是什么呀!”“50元钱.”那人噔大眼睛说.一听这话,我可来劲了,“这么诱人的的奖品,说什么,我也得试试.”说完,我便问店主怎么抓法.店主说:“这是24个麻将,麻将下写着12个5,12个10,每次只可抓12 个麻将,如果12个麻将标的数总和为60,那么你便可得50元大奖.”我听了也没多卷起了袖子,从兜里掏出5元钱给了店主.
尽管,这可以抓10次,但那份大奖我还是没有拿到.
回到家之后,我想了想,感觉有点不对劲.我想,抓60分,那必须抓得那12个麻将必须都标5,最好的情况就是第1次抓到1个5,第2次抓2个5,第3次抓3个5……第12次抓12个5至少得花去6元钱.但万一抓得那些麻将标的数是10或有的总和是相同的,那么得抓多少次花多少钱.
最后经过一番考虑,终于把问题弄清了,我抓紧到街上找那算帐,可已经跑得无影无踪.
2月28日 星期六 晴
今天我在看报纸的时候看见了这样一个题目:求圆锥的表面积.
[题目]一个圆锥,底面直径是6米,圆锥的顶点到底面圆周上任点长是5米,求这个圆锥的表面积.
我虽没有学习过求圆锥的表面积,但已经学习过圆柱的表面积,通过圆柱的表面积的解题方法知道:圆柱的表面积等于一个侧面加上两个底面积,而圆锥的表面积就是一个侧面积加上一个底面积,侧面是一个扇形,我虽没学过但我查了资料知道求扇形的面积是:扇形的面积=弧长×圆半径×1/2,题目中已经告诉了我们圆锥顶点到底面圆周上任一点长是5米,而弧长是3.14×6=18.84(米),扇形面积是18.84×5×1/2=47.1(平方米),最后用扇形面积加上底面积,就得到圆锥的表面积:47.1+3.14×(6/2)×(6/2)=75.36(平方米).
数学是思维的体操,我们只要勤学善思,就一定会攻克难题,走上成功之路!
3月2日星期二
每逢清明节,巨山上便会人山人海,于是一些骗子便想出了一些骗人的把戏来骗人,比如:像圆盘赌物.
道具非常简单,在一块木板上画一个大圆,大圆中心用钉子固定一根可以转动的指针.大圆被分成24个相等的格,格内的针可以转,格内分别写着1—24个相等的数,在单数格中没有值钱的,而双数中差不多都是值钱的.
玩法也很简单,把指针先拨到1,然后你拨动指针,指针就开始旋转,最后停在某个格内,接着再按着指针所在的格上标的数,再把指针拨动,N-1格,N是格子上所标的数.
这只不过是一个小小的数学游戏,其实你无论拨到哪格,只能吃亏,不能得利.因为当指针转到奇数格上,拨动的格数便是奇数-1=偶数,奇数+偶数只等于奇数,所以不可能转到偶数格上,就得不到值钱的东西,假如指针转到偶数格上,拨动的格数便是偶数-1=奇数,奇数+偶数=奇数,还不能得到值钱的东西.
5月12日 星期五
算工钱
中午爸爸下班回来,哼着小调,兴高采烈地跨进家门我迎上去问道:“爸爸,今天有什么事这么高兴?”爸爸说:“这个月我涨工资了.”我问道:“那你现在一个月拿多少工资?”爸爸想了想,微微一笑说:“我比你妈的工资高,我俩的月工资加起来是2800元,月工资差是100元,你说我一个月拿多少工资?”
听了爸爸的话,我动手在纸上画出了线段图帮助我理
通过观察和思考,我很快算出了答案,并且告诉爸爸.首先把妈妈的工资看作和爸爸同样多,那么爸爸、妈妈的月工资一共是(2800+100)=2900元,再把月工资和平均分成2份,求出的1份就是爸爸的月工资.列式是:(2800+100)÷2=1450元.
爸爸听了,满意地直点头.这时,正在做饭的妈妈对我说:“你还有其它方法吗?”“还有其它方法?”我惊奇地说.我报着好奇的心情静下心来再次观察、思考,我发现此题关键是找出以谁作标准的问题,标准不同,方法也就不同.于是,我有了第二种方法:就是以妈妈的工资作标准,假设爸爸和妈妈的工资同样多,那么俩人的月工资和就是(2800-100)=2700元,再把月工资和平均分成2份,求出的1份就是妈妈的月工资最后加上爸爸比妈妈多的100元,就是爸爸的月工资.列式为(2800-100)÷2+100=1450元
6月28日 周二
今天中午,我正在做数学暑假作业.写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所以然,这道题是这样的:
有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数.求它的体积.
我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示.这可怎么入手啊!
正当我急得抓耳挠腮之际,我妈妈的一个同事来了.他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉.于是,他又教我另一种方法:先列出数,再逐一排除.我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字.这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条
棱长(且长度都为质数)之和.于是,我开始分辩这两个数各是哪个数.
最后,我得到了结果,为374立方厘米.我的算式是:209=11×19 19=2+17 11×2×17=374(立方厘米)、
今天,老师给我们出了一道很复杂的算式,后来,经过与同学们一番激烈的唇枪舌战,终于把这道算式给 “正法”了.
题目如下:“123456789×( )+( )=98765432”,老师一写在黑板上,我就开始琢磨起来.天哪,这道题也太复杂了吧,光这么长的数字就看得人头晕,要是一个个去试,该算到什么时候呀?我没看错吧!是坐以待毙,还是迎难而上?我环视了一下四周,见大家都在忙活着,我总不能闲着吧?我的脑筋开始高速运转起来.
我先用复杂的方法来破解.于是,我就开始仔细地思考,什么数与9乘等于最后一位有“1”呢?“啊!我想到了是 “9”,9乘9不就等于81吗?最后一位就是“1”.这么简单!是我聪明过人吧.终于让我想到了,我兴奋地快要哭了,下面应该是……正当我思路开阔、灵感迸发时,被广播操的音乐给打乱了思绪,我的脑海里一片空白,我的心里就像蒙了一片荒漠,什么也记不得了.“唉!煮熟的天鹅又给飞走了.”我伤心地感叹道.可我不死心,在位置上拼命地思考着,可就算我抓破头破,还是理不出头绪来.俗话说“三个臭皮匠,顶个诸葛亮”.于是,我决定豁出这张脸皮去请教别人.我来到了大名鼎鼎的邵月辉那里.让我意想不到的事情是,原来他也深陷这道题当中,正在与别人讨论着呢.我就上前与他们一起讨论了起来.邵月辉似乎信心不足,低声地说:“我觉得第一个括号里应该填1,第二个括号里用987654321减123456789的差就行了吗?”我拍了拍后脑勺,尖叫道:“对呀!我真是糊涂呀”!可我又冷静地想了想,这题括号那么小,不可能填像糖葫芦似的那么多数字.肯定没这么简单!可该怎么算呢?我们又犯难了?
6月28日 周二
今天中午,我正在做数学暑假作业.写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所以然,这道题是这样的:
有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数.求它的体积.
我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示.这可怎么入手啊!
正当我急得抓耳挠腮之际,我妈妈的一个同事来了.他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉.于是,他又教我另一种方法:先列出数,再逐一排除.我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字.这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条
棱长(且长度都为质数)之和.于是,我开始分辩这两个数各是哪个数.
最后,我得到了结果,为374立方厘米.我的算式是:209=11×19 19=2+17 11×2×17=374(立方厘米)
后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样.
解出这道题后,我心里比谁都高兴.我还明白了一个道理:数学充满了奥秘,等待着我们去探求.