优质解答
估算一般有四种估法:
1.四舍五入
2. 进一法
3.去尾法
4.数量单位估计法
例如:
l、低位估算法:即只计算算式中的最低位就能预知或用此法检验原式的值是否准确,此法常用于验算.如:467-198的简便算法,学生对多减要加上还是要再减,往往易错,只要口算17-8=9从结果的个位可预知原式的正确率.
2、高位估算:即只计算算式中几个已知数的最高位,然后根据最高位的运算结果估计整个算式的值的正确率.如:4278÷73,因4278≈4200,73≈70,从4200÷70=60中,可判断商的最高位是否正确.
3、数位估算方法:根据数位原则及积商的定位规律,即积的位数等于两个因数之和或比这个和少1;商的位数等于被除数的位数,减去除数的位数所得的差,或比这个差少1等法则进行估算,如:267×82= ,因高位数四舍五入后3×8=24,24≥10所以原式的位数是五位数;246×32=,因高位数四舍五入是2×3=6,6<10,所以原式的值的位数是四位数,又如:7298÷36= 几位数,因被除数四位减除数两位等于2,且前两位够除,所以原式的商是三位数.
4、近似估算法:对于一些较复杂的乘法或除法;在笔算中常以估算作为基础,先把各个已知数四舍五入变为近似整十、整百、整千的数,就可以估算出结果的粗略的值.如估算7832×63,由于7832≈8000,63≈60,8千乘以6十的积是48万,所以7832×雨的3大约等于48万,又如估算56427÷732,被除数、除数近似于560个百和7个百,560百÷7百=80,所以计算结果大约是80.
5、观察估算法:观察有关已知数,通过估算,可以快捷地判断谁大,谁小或计算的准确度.如:比较大小,80+20×80+200(80+20)×(80+20)及4/7和5/11选择题32.7×1.5=( )A.4.905 B.49.05 C.49.07 D.490.5;判断6/7+4/5比____小,比___大.
6、直觉估算法:学习计量单位以后,教师引导学生结合生活实例,凭借学生的直观感知进行估算,如:1米有多长,l00米呢?100O米呢?又如:目测,步测估算并长度、面积等.
7、口算估算法:在计算中,除了必须熟记加法表和乘法口诀外,记住一些特殊的数的计算结果,对于估算也十分有益,例如:25×4=100,125×8=1000,15×4=60,18×5=90,12×12=144等,利用这些基本口算也可进行估算,如1248×813.由于题中的两个已知数分别接近于1250和800,所以利用125×8=1000,估算出1248×813的大约结果.
8、综合估算法:将观察对象看作一个整体,综合用各方面知识进行估算,如:不用计算,估计下面哪道题的积最大,并说明理由.
82×88 83×87 84×86 85×85
估算一般有四种估法:
1.四舍五入
2. 进一法
3.去尾法
4.数量单位估计法
例如:
l、低位估算法:即只计算算式中的最低位就能预知或用此法检验原式的值是否准确,此法常用于验算.如:467-198的简便算法,学生对多减要加上还是要再减,往往易错,只要口算17-8=9从结果的个位可预知原式的正确率.
2、高位估算:即只计算算式中几个已知数的最高位,然后根据最高位的运算结果估计整个算式的值的正确率.如:4278÷73,因4278≈4200,73≈70,从4200÷70=60中,可判断商的最高位是否正确.
3、数位估算方法:根据数位原则及积商的定位规律,即积的位数等于两个因数之和或比这个和少1;商的位数等于被除数的位数,减去除数的位数所得的差,或比这个差少1等法则进行估算,如:267×82= ,因高位数四舍五入后3×8=24,24≥10所以原式的位数是五位数;246×32=,因高位数四舍五入是2×3=6,6<10,所以原式的值的位数是四位数,又如:7298÷36= 几位数,因被除数四位减除数两位等于2,且前两位够除,所以原式的商是三位数.
4、近似估算法:对于一些较复杂的乘法或除法;在笔算中常以估算作为基础,先把各个已知数四舍五入变为近似整十、整百、整千的数,就可以估算出结果的粗略的值.如估算7832×63,由于7832≈8000,63≈60,8千乘以6十的积是48万,所以7832×雨的3大约等于48万,又如估算56427÷732,被除数、除数近似于560个百和7个百,560百÷7百=80,所以计算结果大约是80.
5、观察估算法:观察有关已知数,通过估算,可以快捷地判断谁大,谁小或计算的准确度.如:比较大小,80+20×80+200(80+20)×(80+20)及4/7和5/11选择题32.7×1.5=( )A.4.905 B.49.05 C.49.07 D.490.5;判断6/7+4/5比____小,比___大.
6、直觉估算法:学习计量单位以后,教师引导学生结合生活实例,凭借学生的直观感知进行估算,如:1米有多长,l00米呢?100O米呢?又如:目测,步测估算并长度、面积等.
7、口算估算法:在计算中,除了必须熟记加法表和乘法口诀外,记住一些特殊的数的计算结果,对于估算也十分有益,例如:25×4=100,125×8=1000,15×4=60,18×5=90,12×12=144等,利用这些基本口算也可进行估算,如1248×813.由于题中的两个已知数分别接近于1250和800,所以利用125×8=1000,估算出1248×813的大约结果.
8、综合估算法:将观察对象看作一个整体,综合用各方面知识进行估算,如:不用计算,估计下面哪道题的积最大,并说明理由.
82×88 83×87 84×86 85×85