数学
怎么列方程解应用题练习?初中的一元一次方程要讲清楚,要举些应用题来解释?

2019-06-01

怎么列方程解应用题练习?初中的一元一次方程
要讲清楚,要举些应用题来解释?
优质解答
列一元一次方程的技巧:
【知识方法归纳】 1.列方程解比较容易的两步应用题 (1)列方程解应用题的步骤 ①弄清题意,找出未知数并用x表示; ②找出应用题中数量间的相等关系,列方程; ③解方程; ④检查,写出答案.(2)列方程解应用题的关键 弄清题意后,找出应用题中数量间的相等关系,恰当地设未知数,列出方程.(3)运用一般的数量关系列方程解应用题 首先未知数一定要明确.
用一元一次方程解应用题只不过是把答案或者求出答案需要的条件变为x,从而更好地分析题目.如果你算数学好的话,其实一元一次方程也不是太难.下面是一般的一元一次方程的格式:(问题照抄,只是“什么”改为x或根据题意来设) 依题意得(概括的用语,可以省略很多文字来说明,深受广大中学的师生所喜爱):列式(就是要你把x代入式子中,就像是你把算数的检查一样,把x当作答案来求已知条件) 解方程(就是要你把方程解出来).
一般在解决问题时第一步就是要设出未知数,未知数的设法主要有以下几种:1,有比较关系时,如甲比乙多8,我们一般设较小的为X,这样计算时主要用的是加法不易出错; 2,有倍数关系时,如数学小组人数是英语小组的5倍,我们设一倍量为X,用乘法表示其余量利于计算; 3,在分数应用题中,我们设单位'1'为X,4,在有比的问题中,我们设一份数为X,5,在有和的问题中,我们设其中任意一个为X都可以,比如说两个班共有50人.解应用题的基本步骤有:1,依据题目要求设出合适的未知数; 2,根据题目实际情况找出等量关系,用文字关系式表示出来; 3,依据等量关系,把关系式中的每一项用数或者未知数表示出来列出方程; 4,解方程,依据题目问题计算; 5,把方程的解代入原题目检验.其中的难点是第二步,找出等量关系,有些题目中的关系是比较明显的,而有的则是隐含的,需要大家去用心体会,下面我给大家示例两题:1:爷爷与孙子下棋,爷爷赢一盘记1分,孙子赢一盘记3分,两人下了12盘(未出现和棋)后,得分相同,他们各赢了多少盘?分析:属于和的问题,所以任意设一个为X,设爷爷赢了X题,则孙子赢了(12-X)盘,题目中的等量关系是爷爷得分=孙子得分,爷爷得分用X表示,孙子得分用3(12-X)表示,所以本题方程为 X=3(12-X),解之得X=9,则12-X=12-9=3,所以爷爷赢9盘,孙子赢3盘.2:在一只底面直径为30cm,高为8cm,的圆锥形容器中倒满水,然后将水倒入一只底面直径为10cm的圆柱形空容器里,圆柱形容器中的水有多高?分析:本题没有明显类型所以直接设问题,设圆柱形容器中的水有X厘米,题目中的等量关系是隐含的,是圆锥形容器中的水的体积=圆柱形容器中水的体积,分别表示后有方程 1/3*3.14*(30/2)(30/2)*8=3.14(10/2)(10/2)X,解之得X=24 .
加油!1
列一元一次方程的技巧:
【知识方法归纳】 1.列方程解比较容易的两步应用题 (1)列方程解应用题的步骤 ①弄清题意,找出未知数并用x表示; ②找出应用题中数量间的相等关系,列方程; ③解方程; ④检查,写出答案.(2)列方程解应用题的关键 弄清题意后,找出应用题中数量间的相等关系,恰当地设未知数,列出方程.(3)运用一般的数量关系列方程解应用题 首先未知数一定要明确.
用一元一次方程解应用题只不过是把答案或者求出答案需要的条件变为x,从而更好地分析题目.如果你算数学好的话,其实一元一次方程也不是太难.下面是一般的一元一次方程的格式:(问题照抄,只是“什么”改为x或根据题意来设) 依题意得(概括的用语,可以省略很多文字来说明,深受广大中学的师生所喜爱):列式(就是要你把x代入式子中,就像是你把算数的检查一样,把x当作答案来求已知条件) 解方程(就是要你把方程解出来).
一般在解决问题时第一步就是要设出未知数,未知数的设法主要有以下几种:1,有比较关系时,如甲比乙多8,我们一般设较小的为X,这样计算时主要用的是加法不易出错; 2,有倍数关系时,如数学小组人数是英语小组的5倍,我们设一倍量为X,用乘法表示其余量利于计算; 3,在分数应用题中,我们设单位'1'为X,4,在有比的问题中,我们设一份数为X,5,在有和的问题中,我们设其中任意一个为X都可以,比如说两个班共有50人.解应用题的基本步骤有:1,依据题目要求设出合适的未知数; 2,根据题目实际情况找出等量关系,用文字关系式表示出来; 3,依据等量关系,把关系式中的每一项用数或者未知数表示出来列出方程; 4,解方程,依据题目问题计算; 5,把方程的解代入原题目检验.其中的难点是第二步,找出等量关系,有些题目中的关系是比较明显的,而有的则是隐含的,需要大家去用心体会,下面我给大家示例两题:1:爷爷与孙子下棋,爷爷赢一盘记1分,孙子赢一盘记3分,两人下了12盘(未出现和棋)后,得分相同,他们各赢了多少盘?分析:属于和的问题,所以任意设一个为X,设爷爷赢了X题,则孙子赢了(12-X)盘,题目中的等量关系是爷爷得分=孙子得分,爷爷得分用X表示,孙子得分用3(12-X)表示,所以本题方程为 X=3(12-X),解之得X=9,则12-X=12-9=3,所以爷爷赢9盘,孙子赢3盘.2:在一只底面直径为30cm,高为8cm,的圆锥形容器中倒满水,然后将水倒入一只底面直径为10cm的圆柱形空容器里,圆柱形容器中的水有多高?分析:本题没有明显类型所以直接设问题,设圆柱形容器中的水有X厘米,题目中的等量关系是隐含的,是圆锥形容器中的水的体积=圆柱形容器中水的体积,分别表示后有方程 1/3*3.14*(30/2)(30/2)*8=3.14(10/2)(10/2)X,解之得X=24 .
加油!1
相关标签: 列方程 应用题 练习 初中 讲清楚 解释
相关问答