优质解答
数集拓展到实数范围内,仍有些运算无法进行.比如判别式小于0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围. 定义:形如z=a+bi的数称为复数(complex number),其中规定i为虚数单位,且i^2=i*i=-1(a,b是任意实数) 我们将复数z=a+bi中的实数a称为复数z的实部(real part)记作Rez=a 实数b称为复数z的虚部(imaginary part)记作 Imz=b. 已知:当b=0时,z=a,这时复数成为实数 当a=0且b≠0时,z=bi,我们就将其称为纯虚数. 定义: 对于复数z=a+bi,称复数z'=a-bi为z的共轭复数. 定义:将复数的实部与虚部的平方和的正的平方根的值称为该复数的模,记作∣z∣ 即对于复数z=a+bi,它的模 ∣z∣=√(a^2+b^2) 复数的集合用C表示,显然,R是C的真子集 复数集是无序集,不能建立大小顺序. 共轭复数有些有趣的性质: ︱x+yi︱=︱x-yi︱ (x+yi)*(x-yi)=x^2+y^2=︱x+yi︱^2=︱x-yi︱^2
共轭复数
两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number).(当虚部不等于0时也叫共轭虚数)复数z的共轭复数记作zˊ. 根据定义,若z=a+bi(a,b∈R),则 zˊ=a-bi(a,b∈R).共轭复数所对应的点关于实轴对称(详见附图).两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数.在复平面上.表示两个共轭复数的点关于X轴对称.而这一点正是"共轭"一词的来源.两头牛平行地拉一部犁,它们的肩膀上要共架一个横梁,这横梁就叫做"轭".如果用Z表示X+Yi,那么在Z字上面加个"一"就表示X-Yi,或相反.
数集拓展到实数范围内,仍有些运算无法进行.比如判别式小于0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围. 定义:形如z=a+bi的数称为复数(complex number),其中规定i为虚数单位,且i^2=i*i=-1(a,b是任意实数) 我们将复数z=a+bi中的实数a称为复数z的实部(real part)记作Rez=a 实数b称为复数z的虚部(imaginary part)记作 Imz=b. 已知:当b=0时,z=a,这时复数成为实数 当a=0且b≠0时,z=bi,我们就将其称为纯虚数. 定义: 对于复数z=a+bi,称复数z'=a-bi为z的共轭复数. 定义:将复数的实部与虚部的平方和的正的平方根的值称为该复数的模,记作∣z∣ 即对于复数z=a+bi,它的模 ∣z∣=√(a^2+b^2) 复数的集合用C表示,显然,R是C的真子集 复数集是无序集,不能建立大小顺序. 共轭复数有些有趣的性质: ︱x+yi︱=︱x-yi︱ (x+yi)*(x-yi)=x^2+y^2=︱x+yi︱^2=︱x-yi︱^2
共轭复数
两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number).(当虚部不等于0时也叫共轭虚数)复数z的共轭复数记作zˊ. 根据定义,若z=a+bi(a,b∈R),则 zˊ=a-bi(a,b∈R).共轭复数所对应的点关于实轴对称(详见附图).两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数.在复平面上.表示两个共轭复数的点关于X轴对称.而这一点正是"共轭"一词的来源.两头牛平行地拉一部犁,它们的肩膀上要共架一个横梁,这横梁就叫做"轭".如果用Z表示X+Yi,那么在Z字上面加个"一"就表示X-Yi,或相反.