数学
指数函数和对数函数的运算法则是什么?

2020-04-29

指数函数和对数函数的运算法则是什么?
优质解答
指数函数
指数函数的一般形式为y=a^x(a>0且不=1) ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
  如图所示为a的不同大小影响函数图形的情况.
  在函数y=a^x中可以看到:
  (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,
  同时a等于0一般也不考虑.
  (2) 指数函数的值域为大于0的实数集合.
  (3) 函数图形都是下凹的.
  (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的.
  (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置.其中水平直线y=1是从递减到递增的一个过渡位置.
  (6) 函数总是在某一个方向上无限趋向于X轴,永不相交.
  (7) 函数总是通过(0,1)这点
  (8) 显然指数函数无界.
  (9) 指数函数既不是奇函数也不是偶函数.
  (10)当两个指数函数中的a互为倒数是,此函数图像是偶函数.
  例1:下列函数在R上是增函数还是减函数?说明理由.
  ⑴y=4^x
  因为4>1,所以y=4^x在R上是增函数;
  ⑵y=(1/4)^x
  因为00且a≠1,N>0;
③loga1=0,logaa=1,alogaN=N,logaab=b.
特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.
2对数式与指数式的互化
式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)
3对数的运算性质
如果a>0,a≠1,M>0,N>0,那么
(1)loga(MN)=logaM+logaN.
(2)logaMN=logaM-logaN.
(3)logaMn=nlogaM (n∈R).
指数函数
指数函数的一般形式为y=a^x(a>0且不=1) ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
  如图所示为a的不同大小影响函数图形的情况.
  在函数y=a^x中可以看到:
  (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,
  同时a等于0一般也不考虑.
  (2) 指数函数的值域为大于0的实数集合.
  (3) 函数图形都是下凹的.
  (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的.
  (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置.其中水平直线y=1是从递减到递增的一个过渡位置.
  (6) 函数总是在某一个方向上无限趋向于X轴,永不相交.
  (7) 函数总是通过(0,1)这点
  (8) 显然指数函数无界.
  (9) 指数函数既不是奇函数也不是偶函数.
  (10)当两个指数函数中的a互为倒数是,此函数图像是偶函数.
  例1:下列函数在R上是增函数还是减函数?说明理由.
  ⑴y=4^x
  因为4>1,所以y=4^x在R上是增函数;
  ⑵y=(1/4)^x
  因为00且a≠1,N>0;
③loga1=0,logaa=1,alogaN=N,logaab=b.
特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.
2对数式与指数式的互化
式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)
3对数的运算性质
如果a>0,a≠1,M>0,N>0,那么
(1)loga(MN)=logaM+logaN.
(2)logaMN=logaM-logaN.
(3)logaMn=nlogaM (n∈R).
相关标签: 指数函数 对数函数 运算 法则
相关问答