优质解答
同道中人啊,当时我在这一块儿内容的理解上也是费了很多功夫呢~就着你的问题本人趁机又温习了一遍,非常受益,下面再针对性补充一些自己的想法:
首先,我认为你的首要问题出在:还是在以高中学数学的一些思维方式思考问题,这也是关键问题所在.正如你说的
“特别是运用这个“对于任意给定的正数e(不论多么的小),总存在正整数N,使得对于n>N的一切Xn,不等式/Xn-a/无穷属于n>N这句话时,我觉得这个证明才说得通”
这里你会感到很怪,甚至无厘头,正是因为这里引入了“…任意小的正数ε,总存在着一个正整数N,使得对于n>N的一切X‹n›,不等式︱X‹n›-a︱无穷的概念得以表达(正如你所说的:
“…在那个地方加入n->无穷属于n>N这句话时,我觉得这个证明才说得通
实际上Q前面的那些证明可以下一个结论,就是lim1/n=0,n>1/e 而n->无穷又属于n>N,所以才有lim1/n=0 n->无穷 ,也可以说1/e就是无穷吧.”实际就是这个意思!
于是以上所有综合起来构成的定义就完整的给出了数列极限的概念!
不知以上是否说得明白了,总之在最后建议你进入大学后一定要摈弃一些高中时的初等思维方式,用更普遍的思维去想问题,否则将寸步难行!
其余就不再赘述了,相信这些再综合楼上两位所述,一定会对你有很大帮助!
同道中人啊,当时我在这一块儿内容的理解上也是费了很多功夫呢~就着你的问题本人趁机又温习了一遍,非常受益,下面再针对性补充一些自己的想法:
首先,我认为你的首要问题出在:还是在以高中学数学的一些思维方式思考问题,这也是关键问题所在.正如你说的
“特别是运用这个“对于任意给定的正数e(不论多么的小),总存在正整数N,使得对于n>N的一切Xn,不等式/Xn-a/无穷属于n>N这句话时,我觉得这个证明才说得通”
这里你会感到很怪,甚至无厘头,正是因为这里引入了“…任意小的正数ε,总存在着一个正整数N,使得对于n>N的一切X‹n›,不等式︱X‹n›-a︱无穷的概念得以表达(正如你所说的:
“…在那个地方加入n->无穷属于n>N这句话时,我觉得这个证明才说得通
实际上Q前面的那些证明可以下一个结论,就是lim1/n=0,n>1/e 而n->无穷又属于n>N,所以才有lim1/n=0 n->无穷 ,也可以说1/e就是无穷吧.”实际就是这个意思!
于是以上所有综合起来构成的定义就完整的给出了数列极限的概念!
不知以上是否说得明白了,总之在最后建议你进入大学后一定要摈弃一些高中时的初等思维方式,用更普遍的思维去想问题,否则将寸步难行!
其余就不再赘述了,相信这些再综合楼上两位所述,一定会对你有很大帮助!