数学
一道高数选择题,答案好像错了,确认下,请写出解题步骤,设幂级数∑(n=1 → ∞) An x^n与∑(n=1 → ∞) Bn x^n的收敛半径分别为(5^(1/2))/3与1/3,则幂级数∑(n=1 → ∞) (Bn^2/An^2) x^n的收敛半径为 ( )A.5B.(5^(1/2))/3C.1/3D.1/5我认为是选D

2019-04-02

一道高数选择题,答案好像错了,确认下,请写出解题步骤,
设幂级数∑(n=1 → ∞) An x^n与∑(n=1 → ∞) Bn x^n的收敛半径分别为(5^(1/2))/3与1/3,则幂级数∑(n=1 → ∞) (Bn^2/An^2) x^n的收敛半径为 ( )
A.5
B.(5^(1/2))/3
C.1/3
D.1/5
我认为是选D
优质解答
设:
lim(n→∞) A(n+1)/An =ρ1 ==> R1= 1/ρ1=(5^(1/2))/3
lim(n→∞) B(n+1)/Bn =ρ2 ==> R2= 1/ρ2=1/3
则:
lim(n→∞) [(B(n+1)^2/A(n+1)^2)]/(Bn^2/An^2)
=lim(n→∞) [(B(n+1)^2/Bn^2)]/(A(n+1)^2/An^2)
=ρ2^2/ρ1^2
=R1^2/R2^2
=((5^(1/2))/3)^2/(1/3)^2

∑(n=1 → ∞) (Bn^2/An^2) x^n的收敛半径
R= 1/ρ =1/5
选 D
设:
lim(n→∞) A(n+1)/An =ρ1 ==> R1= 1/ρ1=(5^(1/2))/3
lim(n→∞) B(n+1)/Bn =ρ2 ==> R2= 1/ρ2=1/3
则:
lim(n→∞) [(B(n+1)^2/A(n+1)^2)]/(Bn^2/An^2)
=lim(n→∞) [(B(n+1)^2/Bn^2)]/(A(n+1)^2/An^2)
=ρ2^2/ρ1^2
=R1^2/R2^2
=((5^(1/2))/3)^2/(1/3)^2

∑(n=1 → ∞) (Bn^2/An^2) x^n的收敛半径
R= 1/ρ =1/5
选 D
相关标签: 高数 选择题 答案 好像 确认 写出 解题 步骤 半径 分别
相关问答