数学
用牛顿-莱布尼茨公式计算定积分.①∫(0到π) √(1-sin2x) dx ②∫(-2到3) max{1,x^4} dx

2020-05-31

用牛顿-莱布尼茨公式计算定积分.
①∫(0到π) √(1-sin2x) dx ②∫(-2到3) max{1,x^4} dx
优质解答
①原积分=∫(0到π)√[(sinx)^2-2sinxcosx+(cosx)^2]dx=∫(0到π)√(sinx-cosx)^2dx=∫(0到π/4)(cosx-sinx)dx+∫(π/4到π)(sinx-cosx)dx=(sinx+cosx)(x=π/4)-(sinx+cosx)(x=0)+(﹣cosx-sinx)(x=π)-(﹣cosx-si... ①原积分=∫(0到π)√[(sinx)^2-2sinxcosx+(cosx)^2]dx=∫(0到π)√(sinx-cosx)^2dx=∫(0到π/4)(cosx-sinx)dx+∫(π/4到π)(sinx-cosx)dx=(sinx+cosx)(x=π/4)-(sinx+cosx)(x=0)+(﹣cosx-sinx)(x=π)-(﹣cosx-si...
相关标签: 牛顿 公式 计算 积分
相关问答