优质解答
长方形:S=ab{长方形面积=长×宽}
正方形:S=a^2{正方形面积=边长×边长}
平行四边形:S=ab{平行四边形面积=底×高}
三角形:S=ab÷2{三角形面积=底×高÷2}
梯形:S=(a+b)×h÷2{梯形面积=(上底+下底)×高÷2}
圆形(正圆):S=∏r^2{圆形(正圆)面积=圆周率×半径×半径}
圆形(正圆外环):S=∏R^2-∏r^2{圆形(外环)面积=圆周率×外环半径×外环半径-圆周率×内环半径×内环半径}
圆形(正圆扇形):S=∏r^2×n/360{圆形(扇形)面积=圆周率×半径×半径×扇形角度/360}
长方体表面积:S=2(ab+ac+bc){长方体表面积=(长×宽+长×高+宽×高)×2}
正方体表面积:S=6a^2{正方体表面积=棱长×棱长×6}
球体(正球)表面积:S=4∏r^2{球体(正球)表面积=圆周率×半径×半径×4}
椭圆 S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).
圆柱体的体积公式:体积=底面积×高 ,如果用h代表圆柱体的高,则圆柱=S底×h=πr² ×h,或S=πr的平方h.
长方体
长方体的体积公式:体积=长×宽×高.(底面积乘以高 S底·h) 如果用a、b、c分别表示长方体的长、宽、高则 长方体体积公式为:V长=abc.
正方体
正方体的体积公式:体积=棱长×棱长×棱长.(底面积乘以高 S底·h) 如果用a表示正方体的棱长,则 正方体的体积公式为V=a·a·a=a^3.
常规公式
锥体的体积=底面面积×高×三分之一. 圆锥=底面积×高×三分之一 .
三棱锥的坐标体积公式
三棱锥是立体空间中最普通最基本的图形,正如三角形之于二维空间. 已知空间内三角形三顶点坐标A(a1,a2,a3),B(b1,b2,b3),C(c1,c2c3),O为原点,则三棱锥O-ABC的体积V=∣(a1b2c3+b1c2a3+c1a2b3-a1c2b3-b1a2c3-c1b2a3)∣/3
台体体积公式:V=[ S上+√(S上S下)+S下]h÷3.
圆台体积公式:V=[S+S′+√(SS′)]h÷3=πh(R^2+Rr+r^2)/3.
球缺体积公式=(π/3)(3R-h)*h^2.
球体积公式:V=(4/3)πR^3.
椭球在xyz-笛卡儿坐标系中的标准方程是:{x^2 / a^2}+{y^2 / b^2}+{z^2 / c^2}=1 ,其体积是V= (4/3)πabc .(a与b,c分别代表各轴的一半)
长方形:S=ab{长方形面积=长×宽}
正方形:S=a^2{正方形面积=边长×边长}
平行四边形:S=ab{平行四边形面积=底×高}
三角形:S=ab÷2{三角形面积=底×高÷2}
梯形:S=(a+b)×h÷2{梯形面积=(上底+下底)×高÷2}
圆形(正圆):S=∏r^2{圆形(正圆)面积=圆周率×半径×半径}
圆形(正圆外环):S=∏R^2-∏r^2{圆形(外环)面积=圆周率×外环半径×外环半径-圆周率×内环半径×内环半径}
圆形(正圆扇形):S=∏r^2×n/360{圆形(扇形)面积=圆周率×半径×半径×扇形角度/360}
长方体表面积:S=2(ab+ac+bc){长方体表面积=(长×宽+长×高+宽×高)×2}
正方体表面积:S=6a^2{正方体表面积=棱长×棱长×6}
球体(正球)表面积:S=4∏r^2{球体(正球)表面积=圆周率×半径×半径×4}
椭圆 S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).
圆柱体的体积公式:体积=底面积×高 ,如果用h代表圆柱体的高,则圆柱=S底×h=πr² ×h,或S=πr的平方h.
长方体
长方体的体积公式:体积=长×宽×高.(底面积乘以高 S底·h) 如果用a、b、c分别表示长方体的长、宽、高则 长方体体积公式为:V长=abc.
正方体
正方体的体积公式:体积=棱长×棱长×棱长.(底面积乘以高 S底·h) 如果用a表示正方体的棱长,则 正方体的体积公式为V=a·a·a=a^3.
常规公式
锥体的体积=底面面积×高×三分之一. 圆锥=底面积×高×三分之一 .
三棱锥的坐标体积公式
三棱锥是立体空间中最普通最基本的图形,正如三角形之于二维空间. 已知空间内三角形三顶点坐标A(a1,a2,a3),B(b1,b2,b3),C(c1,c2c3),O为原点,则三棱锥O-ABC的体积V=∣(a1b2c3+b1c2a3+c1a2b3-a1c2b3-b1a2c3-c1b2a3)∣/3
台体体积公式:V=[ S上+√(S上S下)+S下]h÷3.
圆台体积公式:V=[S+S′+√(SS′)]h÷3=πh(R^2+Rr+r^2)/3.
球缺体积公式=(π/3)(3R-h)*h^2.
球体积公式:V=(4/3)πR^3.
椭球在xyz-笛卡儿坐标系中的标准方程是:{x^2 / a^2}+{y^2 / b^2}+{z^2 / c^2}=1 ,其体积是V= (4/3)πabc .(a与b,c分别代表各轴的一半)