优质解答
求导公式 c'=0(c为常数) (x^a)'=ax^(a-1),a为常数且a≠0 (a^x)'=a^xlna (e^x)'=e^x (logax)'=1/(xlna),a0且 a≠1 (lnx)'=1/x (sinx)'=cosx (cosx)'=-sinx (tanx)'=(secx)^2 (secx)'=secxtanx (cotx)'=-(cscx)^2 (cscx)'=-csxcotx (arcsinx)'=1/√(1-x^2) (arccosx)'=-1/√(1-x^2) (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (shx)'=chx (chx)'=shx (uv)'=uv'+u'v (u+v)'=u'+v' (u/)'=(u'v-uv')/^2 很多的…
求导公式 c'=0(c为常数) (x^a)'=ax^(a-1),a为常数且a≠0 (a^x)'=a^xlna (e^x)'=e^x (logax)'=1/(xlna),a0且 a≠1 (lnx)'=1/x (sinx)'=cosx (cosx)'=-sinx (tanx)'=(secx)^2 (secx)'=secxtanx (cotx)'=-(cscx)^2 (cscx)'=-csxcotx (arcsinx)'=1/√(1-x^2) (arccosx)'=-1/√(1-x^2) (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (shx)'=chx (chx)'=shx (uv)'=uv'+u'v (u+v)'=u'+v' (u/)'=(u'v-uv')/^2 很多的…