优质解答
∵P1是线段AB的黄金分割点,AP1>BP1 设AB=a
∴AP1=〔(√5-1)/2〕*a
∵点O是AB的中点
∴AO=(1/2)*a
∴OP1 =AP1-AO=〔(√5-1)/2〕*a-(1/2)*a=(√5a)/2-a
P1P2=2*OP1=√5a-2a
∵BP1=AB-AP1=a-〔(√5-1)/2〕*a=(3-√5)a/2
∴BP2=P1P2+BP1=√5a-2a+(3-√5)a/2=〔(√5-1)/2〕a
∵P2B*P1P2=〔(√5-1)/2〕a *(√5a-2a)=(7-3√5)a²/2
P1B²=(3-√5)a/2=(7-3√5)a²/2
∴P2B*P1P2=P1B²
即P1B是P2B和P1P2的比例中项.
∵P1是线段AB的黄金分割点,AP1>BP1 设AB=a
∴AP1=〔(√5-1)/2〕*a
∵点O是AB的中点
∴AO=(1/2)*a
∴OP1 =AP1-AO=〔(√5-1)/2〕*a-(1/2)*a=(√5a)/2-a
P1P2=2*OP1=√5a-2a
∵BP1=AB-AP1=a-〔(√5-1)/2〕*a=(3-√5)a/2
∴BP2=P1P2+BP1=√5a-2a+(3-√5)a/2=〔(√5-1)/2〕a
∵P2B*P1P2=〔(√5-1)/2〕a *(√5a-2a)=(7-3√5)a²/2
P1B²=(3-√5)a/2=(7-3√5)a²/2
∴P2B*P1P2=P1B²
即P1B是P2B和P1P2的比例中项.