一道高中三角函数数学题把下列各式化成积的形式.(1) sin54°+sin22°(2) cos4°+cos52°
2019-06-25
一道高中三角函数数学题
把下列各式化成积的形式.
(1) sin54°+sin22°
(2) cos4°+cos52°
优质解答
合差化积:
1)
(54°+22°)/2=38°
sin54°+sin22°
=sin(38°+15°)+sin(38°-15°)
=(sin38°cos15°+cos38°sin15°)+(sin38°cos15°-cos38°sin15°)
=2 sin38°cos15°
2)
4°+52°)/2=28°
cos4°+cos52°
=cos(28°-24°)+cos(28°+24°)
=(cos28°cos24°+sincos28°sin24°)+(cos28°cos24°-sincos28°sin24°)
=2 cos28°cos24°
合差化积:
1)
(54°+22°)/2=38°
sin54°+sin22°
=sin(38°+15°)+sin(38°-15°)
=(sin38°cos15°+cos38°sin15°)+(sin38°cos15°-cos38°sin15°)
=2 sin38°cos15°
2)
4°+52°)/2=28°
cos4°+cos52°
=cos(28°-24°)+cos(28°+24°)
=(cos28°cos24°+sincos28°sin24°)+(cos28°cos24°-sincos28°sin24°)
=2 cos28°cos24°