优质解答
6月28日 周二
今天中午,我正在做数学暑假作业.写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所以然,这道题是这样的:
有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数.求它的体积.
我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示.这可怎么入手啊!
正当我急得抓耳挠腮之际,我妈妈的一个同事来了.他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉.于是,他又教我另一种方法:先列出数,再逐一排除.我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字.这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条
棱长(且长度都为质数)之和.于是,我开始分辩这两个数各是哪个数.
最后,我得到了结果,为374立方厘米.我的算式是:209=11×19 19=2+17 11×2×17=374(立方厘米)
后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样.
解出这道题后,我心里比谁都高兴.我还明白了一个道理:数学充满了奥秘,等待着我们去探求.
数学日记二
8月6日 周六
今天晚上,我看见一道会迷惑人的数学题,题目:37个同学要渡河,渡口有一只能乘上5人的空小船,他们要全部渡过河,至少要使用这只小船多少次?
粗心的人往往会忽略“空小船”,就是忘了要有一个撑船,那么每次只能乘4人.这样37人减去一位撑船的同学,剩36位同学,36除以4等于9,最后一次到对岸当船夫的同学也上岸4,所以至少要走9趟.
数学日记三
8月9日 周二
傍晚,我在奥林匹克书中看到一道难题:果园里的苹果树是梨树的3倍,老王师傅每天给50棵苹果树20棵梨树施肥,几天后,梨树全部施上肥,但苹果树还剩下80棵没施肥.请问:果园里有苹果树和梨树各多少棵?
我没有被这道题吓倒,难题能激发我的兴趣.我想,苹果树是梨树的3倍,假如要使两种树同一天施完肥,老王师傅就应该每天给“20×3”棵苹果树和20棵梨树施肥.而实际他每天只给50棵苹果树施肥,差了10棵,最后共差了80棵,从这里可以得知,老王师傅已经施了8天肥.一天20棵梨树,8天就是160棵梨树,再根据第一个条件,可以知道苹果树是480棵.这就是用假设的思路来解题,因此我想,假设法实在是一种很好的解题方法.
数学日记四
8月11日 周四
今天我又遇到一道数学难题,费了好大的劲才解出来.题目是:两棵树上共有30只小鸟,乙树上先飞走4只,这时甲树飞向乙树3只,两棵树上的小鸟刚好相等.两棵树上原来各有几只小鸟?
我一看完题目,就知道这是还原问题,于是用还原问题的方法解.可验算时却发现错了.我便更加认真地重新做起来.我想,少了4只后一样多,那一半是13只,还原乙树是14只;甲树就是16只.算式为:(30—4)÷2=13(只);13—3+4=14(只);30—14=16(只).答案为:甲树16只,乙树14只.
通过解这道题,我明白了,无论做什么题,都要细心,否则,即使掌握了解题方法,结果还会出错.
今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较1111/111,11111/1111两个分数的大小.顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法.那就是把这两个假分数化成带分数,然后利用分数的规律,同分子 分数,分母越小,这个分数就越大.解出1111/111111×11111,那么也就是1111/111>11111/1111.
今天,我在数学1+2训练上看到这么一题,在一底面积为648平方厘米的立方体铸体中,以相对的两面为底去掉最大的一个圆柱体,求剩下的立体图形面积是多少?
看到这个题目,我犯糊涂了,想:只告诉一个底面积,这怎么求啊?坐在椅子上的妈妈看了,嘲笑我说:“哼,还说高水平哩,连这道题都不会做.”
我知道妈妈用的是激将法,目的是激怒我的好胜心,让我把这题做完.为了让妈妈认为她的激将法成功了,我就硬着头皮做了下去,可是怎么想也理不出头绪来.但是我并没灰心,继续做了下去,我做了出来.
根据图(要画图)可以发现,切掉一个圆柱,又出来一个同原来圆柱同样大的洞,虽然这洞与圆柱体体积相同,但是它们的表面积并不相同,而是比原来圆柱少了两个底面的面积.
所以剩下的图形面积应该等于正方体6个面的面积减去圆柱的两个底面+圆柱的侧面.
列算式是628×6-628×3.14÷4×2+628×3.14
6月28日 周二
今天中午,我正在做数学暑假作业.写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所以然,这道题是这样的:
有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数.求它的体积.
我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示.这可怎么入手啊!
正当我急得抓耳挠腮之际,我妈妈的一个同事来了.他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉.于是,他又教我另一种方法:先列出数,再逐一排除.我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字.这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条
棱长(且长度都为质数)之和.于是,我开始分辩这两个数各是哪个数.
最后,我得到了结果,为374立方厘米.我的算式是:209=11×19 19=2+17 11×2×17=374(立方厘米)
后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样.
解出这道题后,我心里比谁都高兴.我还明白了一个道理:数学充满了奥秘,等待着我们去探求.
数学日记二
8月6日 周六
今天晚上,我看见一道会迷惑人的数学题,题目:37个同学要渡河,渡口有一只能乘上5人的空小船,他们要全部渡过河,至少要使用这只小船多少次?
粗心的人往往会忽略“空小船”,就是忘了要有一个撑船,那么每次只能乘4人.这样37人减去一位撑船的同学,剩36位同学,36除以4等于9,最后一次到对岸当船夫的同学也上岸4,所以至少要走9趟.
数学日记三
8月9日 周二
傍晚,我在奥林匹克书中看到一道难题:果园里的苹果树是梨树的3倍,老王师傅每天给50棵苹果树20棵梨树施肥,几天后,梨树全部施上肥,但苹果树还剩下80棵没施肥.请问:果园里有苹果树和梨树各多少棵?
我没有被这道题吓倒,难题能激发我的兴趣.我想,苹果树是梨树的3倍,假如要使两种树同一天施完肥,老王师傅就应该每天给“20×3”棵苹果树和20棵梨树施肥.而实际他每天只给50棵苹果树施肥,差了10棵,最后共差了80棵,从这里可以得知,老王师傅已经施了8天肥.一天20棵梨树,8天就是160棵梨树,再根据第一个条件,可以知道苹果树是480棵.这就是用假设的思路来解题,因此我想,假设法实在是一种很好的解题方法.
数学日记四
8月11日 周四
今天我又遇到一道数学难题,费了好大的劲才解出来.题目是:两棵树上共有30只小鸟,乙树上先飞走4只,这时甲树飞向乙树3只,两棵树上的小鸟刚好相等.两棵树上原来各有几只小鸟?
我一看完题目,就知道这是还原问题,于是用还原问题的方法解.可验算时却发现错了.我便更加认真地重新做起来.我想,少了4只后一样多,那一半是13只,还原乙树是14只;甲树就是16只.算式为:(30—4)÷2=13(只);13—3+4=14(只);30—14=16(只).答案为:甲树16只,乙树14只.
通过解这道题,我明白了,无论做什么题,都要细心,否则,即使掌握了解题方法,结果还会出错.
今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较1111/111,11111/1111两个分数的大小.顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法.那就是把这两个假分数化成带分数,然后利用分数的规律,同分子 分数,分母越小,这个分数就越大.解出1111/111111×11111,那么也就是1111/111>11111/1111.
今天,我在数学1+2训练上看到这么一题,在一底面积为648平方厘米的立方体铸体中,以相对的两面为底去掉最大的一个圆柱体,求剩下的立体图形面积是多少?
看到这个题目,我犯糊涂了,想:只告诉一个底面积,这怎么求啊?坐在椅子上的妈妈看了,嘲笑我说:“哼,还说高水平哩,连这道题都不会做.”
我知道妈妈用的是激将法,目的是激怒我的好胜心,让我把这题做完.为了让妈妈认为她的激将法成功了,我就硬着头皮做了下去,可是怎么想也理不出头绪来.但是我并没灰心,继续做了下去,我做了出来.
根据图(要画图)可以发现,切掉一个圆柱,又出来一个同原来圆柱同样大的洞,虽然这洞与圆柱体体积相同,但是它们的表面积并不相同,而是比原来圆柱少了两个底面的面积.
所以剩下的图形面积应该等于正方体6个面的面积减去圆柱的两个底面+圆柱的侧面.
列算式是628×6-628×3.14÷4×2+628×3.14