精选问答
陈景润所证明的1+1为什么不等于2?到底是在证明一个什么问题?陈景润对中国的数学界还产生了怎样的影响?所谓的1+1不等于2有没得哲学上的思想?

2019-04-14

陈景润所证明的1+1为什么不等于2?到底是在证明一个什么问题?陈景润对中国的数学界还产生了怎样的影响?所谓的1+1不等于2有没得哲学上的思想?
优质解答
你说的是哥德巴赫猜想吗?那么,我告诉你,所谓的“1+1”或“1+2”都只是个简称。哥德巴赫猜想说的是,任何一个大于 6的偶数都可以表示成两个素数之和,通常表示为“1+1”。我国数学家陈景润于1966年证明:任何充分大的偶数,都是一个质数与一个自然数之和,而后者可表示为两个质数的乘积。通常这个结果表示为“1+2”。这是目前这个问题的最佳结果。请注意,在这里,“1+1”只是一个简称,并非是算术意义上的一加一。陈景润的证明过程,恐怕不是在这里能够写得下的。既使写在这里,又有几人能看得懂呢? 如果你说的是算术意义上的“1+1”,也就是说,如何证明一加一等于二,那么,我告诉你,这不须要证明。一加一等于二是数学公理体系的主要公设。也就是说,一加一等于二是一条公设,属于不证自明的,是其他数学定理推论的前提条件。因此,不存在如何证明一加一等于二这样的问题。 你说的是哥德巴赫猜想吗?那么,我告诉你,所谓的“1+1”或“1+2”都只是个简称。哥德巴赫猜想说的是,任何一个大于 6的偶数都可以表示成两个素数之和,通常表示为“1+1”。我国数学家陈景润于1966年证明:任何充分大的偶数,都是一个质数与一个自然数之和,而后者可表示为两个质数的乘积。通常这个结果表示为“1+2”。这是目前这个问题的最佳结果。请注意,在这里,“1+1”只是一个简称,并非是算术意义上的一加一。陈景润的证明过程,恐怕不是在这里能够写得下的。既使写在这里,又有几人能看得懂呢? 如果你说的是算术意义上的“1+1”,也就是说,如何证明一加一等于二,那么,我告诉你,这不须要证明。一加一等于二是数学公理体系的主要公设。也就是说,一加一等于二是一条公设,属于不证自明的,是其他数学定理推论的前提条件。因此,不存在如何证明一加一等于二这样的问题。
相关标签: 陈景润 证明 为什么 等于 数学界 产生 影响 所谓 哲学 思想
相关问答