初升高数学题,关于二次函数1.已知对于任意实数x,kx²-2x+k 恒为负数,求实数k的取值范围.2.已知函数y=(k²+4k-5)x²+4(1-k)x+3 的图像都在x轴上方,求实数k的取值范围.
2019-05-27
初升高数学题,关于二次函数
1.已知对于任意实数x,kx²-2x+k 恒为负数,求实数k的取值范围.
2.已知函数y=(k²+4k-5)x²+4(1-k)x+3 的图像都在x轴上方,求实数k的取值范围.
优质解答
1.
1)若k=0时,y=-2x不可能恒为负数 ∴k≠0
2)若k≠0时,则所给函数为二次函数
要使对于任意实数x,y=kx²-2x+k 恒为负数 说明图像开口向下 且与x轴没有交点
∴k<0且4-4k²<0
解得:k<-1
2.
1)当k2+4k-5=0时,k=-5或k=1.
若k=-5,则y=24x+3的图象不可能都在x轴上方,故k≠-5.
若k=1,则y=3的图象都在x轴上方.
(2)若k2+4k-5≠0,则所给函数为二次函数,应有k2+4k-5>0且Δ<0,
即(k+5)(k-1)>0,(k-1)(k-19)<0,解得1<k<19.
由(1)、(2)得1≤k<19.
1.
1)若k=0时,y=-2x不可能恒为负数 ∴k≠0
2)若k≠0时,则所给函数为二次函数
要使对于任意实数x,y=kx²-2x+k 恒为负数 说明图像开口向下 且与x轴没有交点
∴k<0且4-4k²<0
解得:k<-1
2.
1)当k2+4k-5=0时,k=-5或k=1.
若k=-5,则y=24x+3的图象不可能都在x轴上方,故k≠-5.
若k=1,则y=3的图象都在x轴上方.
(2)若k2+4k-5≠0,则所给函数为二次函数,应有k2+4k-5>0且Δ<0,
即(k+5)(k-1)>0,(k-1)(k-19)<0,解得1<k<19.
由(1)、(2)得1≤k<19.