初一数学题1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+.+1/(1+2+3+...+100)快的好的50悬赏这道题我看不懂,请给出过程并讲解.快的好的50悬赏
2019-12-04
初一数学题1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+.+1/(1+2+3+...+100)快的好的50悬赏
这道题我看不懂,请给出过程并讲解.快的好的50悬赏
优质解答
因为:
1/(1+2)=1/3=2*(1/2-1/3)
1/(1+2+3)=1/6=2*(1/3-1/4)
1/(1+2+3+4)=1/10=2*(1/4-1/5)
.同理
1/(1+2+3+...+100)=1/5050=2*(1/100-1/101)
所以
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+.+1/(1+2+3+...+100)
=1+2*【(1/2-1/3)+(1/3-1/4)+(1/4-1/5).+(1/100-1/101)】
=1+2*【1/2-1/101】去掉小括号,中间部分相加为0,只剩下头尾
=1+2*99/202
=1+99/101
=200/101
因为:
1/(1+2)=1/3=2*(1/2-1/3)
1/(1+2+3)=1/6=2*(1/3-1/4)
1/(1+2+3+4)=1/10=2*(1/4-1/5)
.同理
1/(1+2+3+...+100)=1/5050=2*(1/100-1/101)
所以
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+.+1/(1+2+3+...+100)
=1+2*【(1/2-1/3)+(1/3-1/4)+(1/4-1/5).+(1/100-1/101)】
=1+2*【1/2-1/101】去掉小括号,中间部分相加为0,只剩下头尾
=1+2*99/202
=1+99/101
=200/101