数学
在小学,我们知道正方形具有性质“四条边都相等,四个内角都是直角”,请适当利用上述知识,解答下列问题:已知:如图,在正方形ABCD中,AB=4,点G是射线AB上的一个动点,以DG为边向右作正方形DGEF,作EH⊥AB于点H.(1)填空:∠AGD+∠EGH=°;(2)若点G在点B的右边.①求证:△DAG≌△GHE;②试探索:EH-BG的值是否为定值,若是,请求出定值;若不是,请说明理由.(3)连接EB,在G点的整个运动(点G与点A重合除外)过程中,求∠EBH的度数;若点G是直线AB上的一个动点,其余条

2019-06-02

在小学,我们知道正方形具有性质“四条边都相等,四个内角都是直角”,请适当利用上述知识,解答下列问题:
已知:如图,在正方形ABCD中,AB=4,点G是射线AB上的一个动点,以DG为边向右作正方形DGEF,作EH⊥AB于点H.
(1)填空:∠AGD+∠EGH=___°;
(2)若点G在点B的右边.
①求证:△DAG≌△GHE;
②试探索:EH-BG的值是否为定值,若是,请求出定值;若不是,请说明理由.
(3)连接EB,在G点的整个运动(点G与点A重合除外)过程中,求∠EBH的度数;若点G是直线AB上的一个动点,其余条件不变,请直接写出点A与点F之间距离的最小值.
作业帮
优质解答
(1)∵四边形DGEF是正方形,
∴∠DGE=90°,
∴∠AGD+∠EGH=180°-∠DGE=90°,
故答案为:90;

(2)①∵EH⊥AB,
∴∠GHE=90°,
∴∠GEH+∠EGH=90°,
又∠AGD+∠EGH=90°,
∴∠GEH=∠AGD,
∵四边形ABCD与四边形DGEF都是正方形,
∴∠DAG=90°,DG=GE,
∴∠DAG=∠GHE,
在△DAG和△GHE中,
∠DAG=∠GHE
∠GEH=∠AGD
DG=GE
作业帮
∴△DAG≌△GHE(AAS);
②EH-BG的值是定值,
理由如下:
由①证得:△DAG≌△GHE,
∴AG=EH,
又AG=AB+BG,AB=4,
∴EH=AB+BG,EH-BG=AB=4;

(3)下面分两种情况讨论:
( I)当点G在点B的左侧时,如图1,同(2)①可证得:△DAG≌△GHE,作业帮
∴GH=DA=AB,EH=AG,
∴GB+BH=AG+GB,
∴BH=AG=EH,又∠GHE=90°
∴△BHE是等腰直角三角形,
∴∠EBH=45°;
( II) 如图2,当点G在点B的右侧时,
由(2)①证得:△DAG≌△GHE.
∴GH=DA=AB,EH=AG,
∴AB+BG=BG+GH,作业帮
∴AG=BH,又EH=AG
∴EH=HB,又∠GHE=90°
∴△BHE是等腰直角三角形,
∴∠EBH=45°;
( III)当点G与点B重合时,如图3,同理可证:△DAG≌△GHE,
∴GH=DA=AB,EH=AG=AB,
∴△GHE(即△BHE)是等腰直角三角形,
∴∠EBH=45°
综上,在G点的整个运动(点G与点A重合除外)过程中,∠EBH都等于45°,
∴点A与点F之间距离的最小值为4.
(1)∵四边形DGEF是正方形,
∴∠DGE=90°,
∴∠AGD+∠EGH=180°-∠DGE=90°,
故答案为:90;

(2)①∵EH⊥AB,
∴∠GHE=90°,
∴∠GEH+∠EGH=90°,
又∠AGD+∠EGH=90°,
∴∠GEH=∠AGD,
∵四边形ABCD与四边形DGEF都是正方形,
∴∠DAG=90°,DG=GE,
∴∠DAG=∠GHE,
在△DAG和△GHE中,
∠DAG=∠GHE
∠GEH=∠AGD
DG=GE
作业帮
∴△DAG≌△GHE(AAS);
②EH-BG的值是定值,
理由如下:
由①证得:△DAG≌△GHE,
∴AG=EH,
又AG=AB+BG,AB=4,
∴EH=AB+BG,EH-BG=AB=4;

(3)下面分两种情况讨论:
( I)当点G在点B的左侧时,如图1,同(2)①可证得:△DAG≌△GHE,作业帮
∴GH=DA=AB,EH=AG,
∴GB+BH=AG+GB,
∴BH=AG=EH,又∠GHE=90°
∴△BHE是等腰直角三角形,
∴∠EBH=45°;
( II) 如图2,当点G在点B的右侧时,
由(2)①证得:△DAG≌△GHE.
∴GH=DA=AB,EH=AG,
∴AB+BG=BG+GH,作业帮
∴AG=BH,又EH=AG
∴EH=HB,又∠GHE=90°
∴△BHE是等腰直角三角形,
∴∠EBH=45°;
( III)当点G与点B重合时,如图3,同理可证:△DAG≌△GHE,
∴GH=DA=AB,EH=AG=AB,
∴△GHE(即△BHE)是等腰直角三角形,
∴∠EBH=45°
综上,在G点的整个运动(点G与点A重合除外)过程中,∠EBH都等于45°,
∴点A与点F之间距离的最小值为4.
相关问答