数学
人教A版数学选修2-31.1节例9用排列的方法解例例例例9999.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和 3 个不重复的阿拉伯数字,并且 3 个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?分析:按照新规定,牌照可以分为 2类,即字母组合在左和字母组合在右.确定一个牌照的字母和数字可以分6个步骤. 将汽车牌照分为 2 类,一类的字母组合在左,另一类的字母

2019-05-30

人教A版数学选修2-31.1节例9用排列的方法解
例例例例9999.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和 3 个不重复的阿拉伯数字,并且 3 个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?分析:按照新规定,牌照可以分为 2类,即字母组合在左和字母组合在右.确定一个牌照的字母和数字可以分6个步骤. 将汽车牌照分为 2 类,一类的字母组合在左,另一类的字母组合在右.字母组合在左时,分6个步骤确定一个牌照的字母和数字:第1步,从26个字母中选1个,放在首位,有26种选法; 第2步,从剩下的25个字母中选 1个,放在第2位,有25种选法; 第3步,从剩下的24个字母中选 1个,放在第3位,有24种选法; 第4步,从10个数字中选1个,放在第 4 位,有10种选法; 第5步,从剩下的 9个数字中选1个,放在第5位,有9种选法; 第6步,从剩下的 8个字母中选1个,放在第6位,有8种选法. 根据分步乘法计数原理,字母组合在左的牌照共有 26 ×25×24×10×9×8=11 232 000(个) .同理,字母组合在右的牌照也有11232 000 个. 所以,共能给 11232 000 + 11232 000 = 22464 000(个) .辆汽车上牌照. 用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析 ― 需要分类还是需要分步.分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到“步骤完整” ― 完成了所有步骤,恰好完成任务,当然步与步之间要相互独立.分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
你能用排列的知识解决它吗
优质解答
A(2,2)*A(10,3)*A(26,3)=2*1*10*9*8*26*25*24=22464000 A(2,2)*A(10,3)*A(26,3)=2*1*10*9*8*26*25*24=22464000
相关问答