优质解答
概念
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. 用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示: x/y(x:y)=k(一定),x和y表示两种相关联的量,k表示它们的比值.两个相关联的量同时变化,方向相同,倍数相同.如果把比例中不变的值称为k,前后项为x、y,则k=x/y,k为两数比值.
正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.
[编辑本段]正比例的意义
☆知识要点:
(1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. ①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示:
②正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?
以上各种商都是一定的,那么被除数和除数. 所表示的两种相关联的量,成正比例关系. 注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例. 例如:一个人的年龄和它的体重,就不能成正比关系,正方形的边长和它的面积也不成正比例关系.
考虑到有些BB会看不懂 讲的简单点吧! 就是如果一样事物增加了,另一样事物也增加,他减少了,另一样事物也减少,这两个事物的关系就叫做正比例.
[编辑本段]正比例的例子
正方形的周长与边长 (比值4)
圆的周长与直径 (比值π)
路程的例子:
1.速度一定,路程和时间成正比例
2.时间一定,路程和速度成正比例面积/宽=长
3.三角形:1/2ab=s
都是定一个,变一个
型如aX=Y的,a不变 XY成正比例
概念
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. 用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示: x/y(x:y)=k(一定),x和y表示两种相关联的量,k表示它们的比值.两个相关联的量同时变化,方向相同,倍数相同.如果把比例中不变的值称为k,前后项为x、y,则k=x/y,k为两数比值.
正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.
[编辑本段]正比例的意义
☆知识要点:
(1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. ①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示:
②正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?
以上各种商都是一定的,那么被除数和除数. 所表示的两种相关联的量,成正比例关系. 注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例. 例如:一个人的年龄和它的体重,就不能成正比关系,正方形的边长和它的面积也不成正比例关系.
考虑到有些BB会看不懂 讲的简单点吧! 就是如果一样事物增加了,另一样事物也增加,他减少了,另一样事物也减少,这两个事物的关系就叫做正比例.
[编辑本段]正比例的例子
正方形的周长与边长 (比值4)
圆的周长与直径 (比值π)
路程的例子:
1.速度一定,路程和时间成正比例
2.时间一定,路程和速度成正比例面积/宽=长
3.三角形:1/2ab=s
都是定一个,变一个
型如aX=Y的,a不变 XY成正比例