优质解答
证明如下:
已知:AB∥CD∥EF,GI,JL交AB,CD,EF于点G,J,H,K,I,L.(如右图)
求证:GH:HI=JK:KL
证明:
过点K作G'I'∥GI交AB ,CD ,EF于点G',H' I'.
∵ AB∥CD∥EF,G'I'∥GI
∴ 四边形GHKG',HII'H‘,GII'G是平行四边形(平行四边形判定定理),∠BJK=∠KLI,∠JG'I'=∠G'I'F(内错角相等)
∴△JG'K∽△I'LK,(相似三角形判定),GH=G'H',HI=H'I'(平行四边形对边相等)
∵G'H':H'I'=JK:KL(相似三角形性质)
∴GH:HI=JK:KL(等量代换)
推论1:过三角形一边中点与另一边平行的直线必平分第三边
推论2:过梯形一腰中点且平行于底边的直线必过另一腰中点
证明如下:
已知:AB∥CD∥EF,GI,JL交AB,CD,EF于点G,J,H,K,I,L.(如右图)
求证:GH:HI=JK:KL
证明:
过点K作G'I'∥GI交AB ,CD ,EF于点G',H' I'.
∵ AB∥CD∥EF,G'I'∥GI
∴ 四边形GHKG',HII'H‘,GII'G是平行四边形(平行四边形判定定理),∠BJK=∠KLI,∠JG'I'=∠G'I'F(内错角相等)
∴△JG'K∽△I'LK,(相似三角形判定),GH=G'H',HI=H'I'(平行四边形对边相等)
∵G'H':H'I'=JK:KL(相似三角形性质)
∴GH:HI=JK:KL(等量代换)
推论1:过三角形一边中点与另一边平行的直线必平分第三边
推论2:过梯形一腰中点且平行于底边的直线必过另一腰中点