优质解答
delta
δQ/dT这里可以理解为一个除式,而不是全微分或偏微分.因为反应中热量的变化与过程有关(等温、等压或者绝热等等),而不是温度,压强等热力学量的函数.也就是说,即使初末状态相同,反应中涉及的热量变化也不相同,因此不能理解为全微分或偏微分,而属于泛函分析的范畴.
具体δ符号的理解可以参见泛函分析教科书(主要在变分法部分).
关于泛函,通俗来说就是“函数的函数”,举个简单的例子,已知f(x1)=a,f(x2)=b,积分F[f;x1,x2]=∫(x1->x2)f(x)dx(x1->x2表示积分上下限),F称为函数f的一个泛函(由f(x)还可以构造其他泛函而不仅限于积分).δF/δf表示因为函数f(x)的形式不同(而不是自变量x)而造成的F的变化.
在热量的那个例子里,T,P,V之类的热力学量可表示为时间的函数,而热量的变化可以用这些热力学量及它们的一些函数(比如最简单情况下内能是T的函数,对外做功是pdV等)对时间积分得到. 而δQ/dT的意思并不是随T(t)变化δQ的变化,而是首先定下时刻t的状态(这是我们研究的过程中的一点),然后假设可以给定一个时刻t'的状态(这个不一定是真实过程中的点,但是必须是是t时刻状态可以通过所研究过程达到的点),然后在给定过程下算出一个δQ(此时算得的这个δQ应与t'取法无关而只和t与t'状态有关),t时刻对应一个温度T,t'时刻状态对应一个温度T+ΔT,令ΔT-〉0(也即改变t'时刻对应的状态)即可算出所研究的过程中t时刻的δQ/dT,因此记号是dT不是δT.
delta
δQ/dT这里可以理解为一个除式,而不是全微分或偏微分.因为反应中热量的变化与过程有关(等温、等压或者绝热等等),而不是温度,压强等热力学量的函数.也就是说,即使初末状态相同,反应中涉及的热量变化也不相同,因此不能理解为全微分或偏微分,而属于泛函分析的范畴.
具体δ符号的理解可以参见泛函分析教科书(主要在变分法部分).
关于泛函,通俗来说就是“函数的函数”,举个简单的例子,已知f(x1)=a,f(x2)=b,积分F[f;x1,x2]=∫(x1->x2)f(x)dx(x1->x2表示积分上下限),F称为函数f的一个泛函(由f(x)还可以构造其他泛函而不仅限于积分).δF/δf表示因为函数f(x)的形式不同(而不是自变量x)而造成的F的变化.
在热量的那个例子里,T,P,V之类的热力学量可表示为时间的函数,而热量的变化可以用这些热力学量及它们的一些函数(比如最简单情况下内能是T的函数,对外做功是pdV等)对时间积分得到. 而δQ/dT的意思并不是随T(t)变化δQ的变化,而是首先定下时刻t的状态(这是我们研究的过程中的一点),然后假设可以给定一个时刻t'的状态(这个不一定是真实过程中的点,但是必须是是t时刻状态可以通过所研究过程达到的点),然后在给定过程下算出一个δQ(此时算得的这个δQ应与t'取法无关而只和t与t'状态有关),t时刻对应一个温度T,t'时刻状态对应一个温度T+ΔT,令ΔT-〉0(也即改变t'时刻对应的状态)即可算出所研究的过程中t时刻的δQ/dT,因此记号是dT不是δT.