优质解答
一,先将球分三组A,B,C,每组四个,随便称两组,如果天平平衡则在另一组中,假设另一组是c,再从c组的四个中随便挑两个称,如果平衡,则在另外两个中,从中挑一个与称过的两个中一个比较,会得到答案
二,如果第一次称的时候天平不平衡,则可知在这八个球中有这个不同的球,将这八个球再分三组.A组3个,B组3个,C组2个,称AB组,如果平衡,则那个不同的球一定在c组中,从c组任取一球和ab组任意一球再次比较,如果平衡为另一球,不平衡就是c组中的此球,可得到答案.
三,如果第二次称AB不平衡,则由前两次称可知那个球在A组还是B组中,在那组中三个球任意选俩再称第三次,就可得答案 v
一,先将球分三组A,B,C,每组四个,随便称两组,如果天平平衡则在另一组中,假设另一组是c,再从c组的四个中随便挑两个称,如果平衡,则在另外两个中,从中挑一个与称过的两个中一个比较,会得到答案
二,如果第一次称的时候天平不平衡,则可知在这八个球中有这个不同的球,将这八个球再分三组.A组3个,B组3个,C组2个,称AB组,如果平衡,则那个不同的球一定在c组中,从c组任取一球和ab组任意一球再次比较,如果平衡为另一球,不平衡就是c组中的此球,可得到答案.
三,如果第二次称AB不平衡,则由前两次称可知那个球在A组还是B组中,在那组中三个球任意选俩再称第三次,就可得答案 v