优质解答
数学源自于我国古代的算术与古希腊的几何,是研究数量、结构、变化以及空间模型等概念的一门科学.透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生.数学的基本要素是:逻辑和直观、分析和推理、共性和个性.
名人:
高斯
高斯是德国数学家、物理学家和天文学家.
高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出.7岁那年,高斯第一次上学了.在国外广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899.说完高斯也算完并把写有答案的小石板交了上去,当时只有他写的答案是正确的.数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法.一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常.
高斯的学术地位,历来被人们推崇得很高.他有“数学王子”、“数学家之王”的美称.
欧几里得
欧几里得,古希腊数学家,被称为“几何之父”.他活跃于托勒密一世(公元前323年-前283年)时期的亚历山大里亚,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书.欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人.
祖冲之
祖冲之(公元429年─公元500年)是中国杰出的数学家,科学家.南北朝时期人,汉族人,字文远.生于未文帝元嘉六年,卒于齐昏侯永元二年.祖籍范阳郡遒县(今河北涞水县).其主要贡献在数学、天文历法和机械三方面.在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了.祖冲之还和儿子祖暅一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式.在机械学方面,他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等.此外,对音乐也研究.他是历史上少有的博学多才的人物.月球上还有一座环形山是以他的名字命名的.
贾宪
中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立.贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世.杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”.这就是著名的“贾宪三角”,或称“杨辉三角”.〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”.
贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现.
数学源自于我国古代的算术与古希腊的几何,是研究数量、结构、变化以及空间模型等概念的一门科学.透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生.数学的基本要素是:逻辑和直观、分析和推理、共性和个性.
名人:
高斯
高斯是德国数学家、物理学家和天文学家.
高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出.7岁那年,高斯第一次上学了.在国外广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899.说完高斯也算完并把写有答案的小石板交了上去,当时只有他写的答案是正确的.数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法.一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常.
高斯的学术地位,历来被人们推崇得很高.他有“数学王子”、“数学家之王”的美称.
欧几里得
欧几里得,古希腊数学家,被称为“几何之父”.他活跃于托勒密一世(公元前323年-前283年)时期的亚历山大里亚,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书.欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人.
祖冲之
祖冲之(公元429年─公元500年)是中国杰出的数学家,科学家.南北朝时期人,汉族人,字文远.生于未文帝元嘉六年,卒于齐昏侯永元二年.祖籍范阳郡遒县(今河北涞水县).其主要贡献在数学、天文历法和机械三方面.在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了.祖冲之还和儿子祖暅一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式.在机械学方面,他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等.此外,对音乐也研究.他是历史上少有的博学多才的人物.月球上还有一座环形山是以他的名字命名的.
贾宪
中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立.贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世.杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”.这就是著名的“贾宪三角”,或称“杨辉三角”.〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”.
贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现.