求解高数中值定理题目设f(x)在(0,+∞)内可导,且0≤f(x)≤x/(1+x^2,)证明存在ξ∈(0,+∞)使得f'(ξ)=(1-ξ^2)/(1+ξ^2)^2
2019-05-22
求解高数中值定理题目
设f(x)在(0,+∞)内可导,且0≤f(x)≤x/(1+x^2,)证明存在ξ∈(0,+∞)使得f'(ξ)=(1-ξ^2)/(1+ξ^2)^2
优质解答
我不知道我这么做对不对。。。
通过观察可以发现 x/(1+x^2)'=(1-x^2)/(1+x^2)^2
首先,当x=0时,x/(1+x^2)=0,故由0≤f(x)≤x/(1+x^2)可知f(0)=0;
其次,当x趋向于正无穷大时,也有x/(1+x^2)=0,由夹逼定理可知此时f(+∞)=0;
所以在区间(0,t)(t趋向于正无穷大),设F(x)=f(x)-x/(1+x^2),由拉格朗日中值定理可得:
存在ξ∈(0,+∞),使得F'(ξ)=F(t)-F(0)/(t-0)(t趋向于正无穷),当t趋向于正无穷时,可知F(t)-F(0)/(t-0)=0,即F'(ξ)=0,化简后即得结果。
我不知道我这么做对不对。。。
通过观察可以发现 x/(1+x^2)'=(1-x^2)/(1+x^2)^2
首先,当x=0时,x/(1+x^2)=0,故由0≤f(x)≤x/(1+x^2)可知f(0)=0;
其次,当x趋向于正无穷大时,也有x/(1+x^2)=0,由夹逼定理可知此时f(+∞)=0;
所以在区间(0,t)(t趋向于正无穷大),设F(x)=f(x)-x/(1+x^2),由拉格朗日中值定理可得:
存在ξ∈(0,+∞),使得F'(ξ)=F(t)-F(0)/(t-0)(t趋向于正无穷),当t趋向于正无穷时,可知F(t)-F(0)/(t-0)=0,即F'(ξ)=0,化简后即得结果。