数学
如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A⇒B⇒C⇒D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、

2019-12-16

如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A⇒B⇒C⇒D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度不变,当点P沿A⇒B⇒C⇒D匀速运动时,OP与PQ能否相等?若 能,写出所有符合条件的t的值;若不能,请说明理由.
优质解答
(1)Q(1,0)(1分)Q的图象是一条直线,且过点(11,0).
且点P运动速度每秒钟1个单位长度.(2分)

(2)过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF=BE=4.
∴AF=10-4=6.
在Rt△AFB中,AB=
8 2 + 6 2
=10,(3分)
过点C作CG⊥x轴于点G,与FB的延长线交于点H.
∵∠ABC=90°,AB=BC,
∴△ABF≌△BCH.
∴BH=AF=6 CH=BF=8.
∴OG=FH=8+6=14,CG=8+4=12.
∴所求C点的坐标为(14,12).(4分)

(3)过点P作PM⊥y轴于点M,PN⊥x轴于点N,
则△APM △ABF.
AP
AB
=
AM
AF
=
MP
BF

t
10
=
AM
6
=
MP
8

∴AM=
3
5
t,PM=
4
5
t,
∴PN=OM=10-
3
5
t,ON=PM=
4
5
t.
设△OPQ的面积为S(平方单位),
∴S=
1
2
×(10-
3
5
t)(1+t)=5+
47
10
t-
3
10
t 2 (0≤t≤10),(5分)
说明:未注明自变量的取值范围不扣分.
∵a=-
3
10
<0

∴当t=-
47
10
2×(-
3
10
)
=
47
6
时,△OPQ的面积最大.(6分)
此时P的坐标为(
94
15
53
10
).(7分)

(4)OP与PQ相等,组成等腰三角形,即当P点的横坐标等于Q点的横坐标的一半时,
当P在BC上时,8+
3
5
(t-10)=
1
2
(t+1),解得:t=-15(舍去)
当P在CD上时,14-
4
5
(t-20)=
1
2
(t+1),解得:t=
295
13

即当t=
295
13
时,OP与PQ相等.
当P在BA上时,t=
5
3
,OP与PQ相等,(9分)
∴当t=
295
13
或t=
5
3
时,OP与PQ相等.
(1)Q(1,0)(1分)Q的图象是一条直线,且过点(11,0).
且点P运动速度每秒钟1个单位长度.(2分)

(2)过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF=BE=4.
∴AF=10-4=6.
在Rt△AFB中,AB=
8 2 + 6 2
=10,(3分)
过点C作CG⊥x轴于点G,与FB的延长线交于点H.
∵∠ABC=90°,AB=BC,
∴△ABF≌△BCH.
∴BH=AF=6 CH=BF=8.
∴OG=FH=8+6=14,CG=8+4=12.
∴所求C点的坐标为(14,12).(4分)

(3)过点P作PM⊥y轴于点M,PN⊥x轴于点N,
则△APM △ABF.
AP
AB
=
AM
AF
=
MP
BF

t
10
=
AM
6
=
MP
8

∴AM=
3
5
t,PM=
4
5
t,
∴PN=OM=10-
3
5
t,ON=PM=
4
5
t.
设△OPQ的面积为S(平方单位),
∴S=
1
2
×(10-
3
5
t)(1+t)=5+
47
10
t-
3
10
t 2 (0≤t≤10),(5分)
说明:未注明自变量的取值范围不扣分.
∵a=-
3
10
<0

∴当t=-
47
10
2×(-
3
10
)
=
47
6
时,△OPQ的面积最大.(6分)
此时P的坐标为(
94
15
53
10
).(7分)

(4)OP与PQ相等,组成等腰三角形,即当P点的横坐标等于Q点的横坐标的一半时,
当P在BC上时,8+
3
5
(t-10)=
1
2
(t+1),解得:t=-15(舍去)
当P在CD上时,14-
4
5
(t-20)=
1
2
(t+1),解得:t=
295
13

即当t=
295
13
时,OP与PQ相等.
当P在BA上时,t=
5
3
,OP与PQ相等,(9分)
∴当t=
295
13
或t=
5
3
时,OP与PQ相等.
相关问答