精选问答
如何上好数学概念课

2019-04-03

如何上好数学概念课
优质解答
数学概念课是数学课堂教学常见的课型之一,是值得我们数学老师认真思考,探讨的.学习了国培课程初中数学概念课堂教学设计,下面我谈一些我个人的收获.一.注重新概念科学的引入是讲好概念的前提 数学概念具有抽象性,新概念的引入要从学生的认知水平和实际情况出发,根据数学概念形成和发展过程,联系生产、生活实际、应用数学教具,使学生觉得概念引入顺其自然,合情合理,生动直观,易于理解,为概念教学创造良好开端.1. 寻求概念形成根源,增强学习的趣味性 几乎每一个数学概念的形成,都伴随着一个动人的故事.概念引入,采用愉快教学法,故事引路,可增强学习的趣味性,降低或消除学习数学的畏惧感.2. 联系生产、生活实际,展示概念的具体性 对于原始和一些较抽象的概念,要联系生产、生活实际情况,利用学生已有的实际知识,给概念赋予具体内容,使学生对较抽象的概念有"看得见,摸得着"之感.如"平面"的概念,可从常见的桌面、墙面等物体表面入手,抽象出平面概念"无限延伸性和无厚度"的本质特性.通过实例,有利于将抽象的概念,形象、生动、直观化,便于学生理解.3. 应用数学教具,提高概念的直观性 有些概念可借助于直观、形象的模型或教具,让学生从感性认识入手;逐步上升到理性认识,形成正确的概念.例如在学习“棱锥”概念时,可预先布置学生剪贴一个底面是多边形,其余各面都是三角形的封闭几何体.学生在想方设法完成这个几何体的创作过程中,明确了要制作成功必须使各三角形有公共的顶点(否则不封闭),这实质上就是概念的一个重要内涵.这样由学生自己总结出棱锥的概念既生动活泼,又锻炼了创造思维能力.二.提示概念本质属性是理解概念的关键 在概念教学中,仅阐明其实际意义是不够的,还应从事物的整体、本质和内在联系出发,对概念进行全面分析,突出其本质属性,才能使学生正确理解概念.例如,函数概念,在讲解时,要选取一定数量的实际问题,用解析法、图象法、列表法等表示这些实际问题,并抽象出函数概念.使学生认识到函数概念的产生不是凭人的主观意识决定的,而是客观实际的需求.三.对照、比较是掌握概念的重要方法 数学知识的系统性很强,新概念大多是在已学的旧概念之上,又增加新的属性而建立起来的.新、旧概念之间,既有区别,又有联系,既有共同之处,又有不同特点,运用对照、比较,是学生掌握新概念的重要方法.例如全等与相似、性质定理与判定定理,即用对照比较法进行新概念的教学,既有利于新概念的理解掌握,又复习巩固了旧概念,同时又能体现知识的发生与迁移过程,便于培养和发展学生思维的广阔性,增强学生数学发现能力.四.强化应用是巩固和深化概念的必要途径 教学中,为了便于学生形成数学概念,把有关对象暂时从它与周围事物的丰富联系中割裂开来,相对独立地加以研究考察,有利于突出并概括它们的本质属性,排除影响学生形成概念的其它干扰因素.但学生这样获得的数学概念是比较孤立、静止的.而许多数学概念,尤其是一些重要概念,牵涉面广,联系着诸多知识.所以在概念形成以后,还须及时上习题课,加强练习,进行概念的巩固、发展和深化.例如,方程的“根”和函数的“零点”,表面看起来都是很容易掌握的,如果教学中把这两个概念与根的判别式,函数的性质,绝对值概念等有关知识割裂开,学生对这两个概念就不能透彻地理解,也谈不上熟练地运用,更达不到提高解题能力的目的.有部分学生由于不了解方程的根与函数的零点间的内在联系,难于下手,或由于绝对值概念掌握的不好,得出错误的结果.对于概念的深刻理解,是提高解题能力的基础,反过来,通过必要的解题实践,更能加深和巩固概念.综上所述,只要在思想上对数学概念教学有足够的重视,明确概念教学的目的要求,把握好每一个教学环节,应用分析比较,加强练习,揭示概念的内涵,把握好概念的外延,概念教学将大大加强,从而促进数学教学质量的提高. 数学概念课是数学课堂教学常见的课型之一,是值得我们数学老师认真思考,探讨的.学习了国培课程初中数学概念课堂教学设计,下面我谈一些我个人的收获.一.注重新概念科学的引入是讲好概念的前提 数学概念具有抽象性,新概念的引入要从学生的认知水平和实际情况出发,根据数学概念形成和发展过程,联系生产、生活实际、应用数学教具,使学生觉得概念引入顺其自然,合情合理,生动直观,易于理解,为概念教学创造良好开端.1. 寻求概念形成根源,增强学习的趣味性 几乎每一个数学概念的形成,都伴随着一个动人的故事.概念引入,采用愉快教学法,故事引路,可增强学习的趣味性,降低或消除学习数学的畏惧感.2. 联系生产、生活实际,展示概念的具体性 对于原始和一些较抽象的概念,要联系生产、生活实际情况,利用学生已有的实际知识,给概念赋予具体内容,使学生对较抽象的概念有"看得见,摸得着"之感.如"平面"的概念,可从常见的桌面、墙面等物体表面入手,抽象出平面概念"无限延伸性和无厚度"的本质特性.通过实例,有利于将抽象的概念,形象、生动、直观化,便于学生理解.3. 应用数学教具,提高概念的直观性 有些概念可借助于直观、形象的模型或教具,让学生从感性认识入手;逐步上升到理性认识,形成正确的概念.例如在学习“棱锥”概念时,可预先布置学生剪贴一个底面是多边形,其余各面都是三角形的封闭几何体.学生在想方设法完成这个几何体的创作过程中,明确了要制作成功必须使各三角形有公共的顶点(否则不封闭),这实质上就是概念的一个重要内涵.这样由学生自己总结出棱锥的概念既生动活泼,又锻炼了创造思维能力.二.提示概念本质属性是理解概念的关键 在概念教学中,仅阐明其实际意义是不够的,还应从事物的整体、本质和内在联系出发,对概念进行全面分析,突出其本质属性,才能使学生正确理解概念.例如,函数概念,在讲解时,要选取一定数量的实际问题,用解析法、图象法、列表法等表示这些实际问题,并抽象出函数概念.使学生认识到函数概念的产生不是凭人的主观意识决定的,而是客观实际的需求.三.对照、比较是掌握概念的重要方法 数学知识的系统性很强,新概念大多是在已学的旧概念之上,又增加新的属性而建立起来的.新、旧概念之间,既有区别,又有联系,既有共同之处,又有不同特点,运用对照、比较,是学生掌握新概念的重要方法.例如全等与相似、性质定理与判定定理,即用对照比较法进行新概念的教学,既有利于新概念的理解掌握,又复习巩固了旧概念,同时又能体现知识的发生与迁移过程,便于培养和发展学生思维的广阔性,增强学生数学发现能力.四.强化应用是巩固和深化概念的必要途径 教学中,为了便于学生形成数学概念,把有关对象暂时从它与周围事物的丰富联系中割裂开来,相对独立地加以研究考察,有利于突出并概括它们的本质属性,排除影响学生形成概念的其它干扰因素.但学生这样获得的数学概念是比较孤立、静止的.而许多数学概念,尤其是一些重要概念,牵涉面广,联系着诸多知识.所以在概念形成以后,还须及时上习题课,加强练习,进行概念的巩固、发展和深化.例如,方程的“根”和函数的“零点”,表面看起来都是很容易掌握的,如果教学中把这两个概念与根的判别式,函数的性质,绝对值概念等有关知识割裂开,学生对这两个概念就不能透彻地理解,也谈不上熟练地运用,更达不到提高解题能力的目的.有部分学生由于不了解方程的根与函数的零点间的内在联系,难于下手,或由于绝对值概念掌握的不好,得出错误的结果.对于概念的深刻理解,是提高解题能力的基础,反过来,通过必要的解题实践,更能加深和巩固概念.综上所述,只要在思想上对数学概念教学有足够的重视,明确概念教学的目的要求,把握好每一个教学环节,应用分析比较,加强练习,揭示概念的内涵,把握好概念的外延,概念教学将大大加强,从而促进数学教学质量的提高.
相关标签: 数学 概念
相关问答