数学
六年级上册数学概念

2019-05-05

六年级上册数学概念
优质解答
这是人教版六年上涉及到的一些概念及解题要领,望采纳:
1、乘积是1的两个数互为倒数.
2、比的意义和性质
(1) 比的意义
两个数相除又叫做两个数的比.
“:”是比号,读作“比”.比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商.
比值通常用分数表示,也可以用小数表示,有时也可能是整数.
比的后项不能是零.
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值.
(2)比的性质
比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质.
(3) 求比值和化简比
求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数.
根据比的基本性质可以把比化成最简单的整数比.它的结果必须是一个最简比,即前、后项是互质的数.
3、圆
(1) 圆的认识
平面上的一种曲线图形.
圆中心的一点叫做圆心.一般用字母o表示.
半径:连接圆心和圆上任意一点的线段叫做半径.一般用r表示.
在同一个圆里,有无数条半径,每条半径的长度都相等.
通过圆心并且两端都在圆上的线段叫做直径.一般用d表示.
同一个圆里有无数条直径,所有的直径都相等.
同一个圆里,直径等于两个半径的长度,即d=2r.
圆的大小由半径决定. 圆有无数条对称轴.
(2)圆的画法
把圆规的两脚分开,定好两脚间的距离(即半径);
把有针尖的一只脚固定在一点(即圆心)上;
把装有铅笔尖的一只脚旋转一周,就画出一个圆.
(3) 圆的周长
围成圆的曲线的长叫做圆的周长.
把圆的周长和直径的比值叫做圆周率.用字母∏表示.
(4) 圆的面积
圆所占平面的大小叫做圆的面积.
(5)计算公式
d=2r
r=d/2
c=∏d
c=2∏r
s=∏r²
4、扇形
(1) 扇形的认识
一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形.
圆上AB两点之间的部分叫做弧,读作“弧AB”.
顶点在圆心的角叫做圆心角.
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关.
扇形有一条对称轴.
(2) 计算公式 (但小学部分所给的扇形都是特殊的,即几分之几圆,如:四分之一圆)
s=n∏r²/360
5、环形
(1) 特征
由两个半径不相等的同心圆相减而成,有无数条对称轴.
(2) 计算公式
s=∏(R²-r²)
6、轴对称图形
特征: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.
正方形有4条对称轴, 长方形有2条对称轴.
等腰三角形有2条对称轴,等边三角形有3条对称轴.
等腰梯形有一条对称轴,圆有无数条对称轴.
菱形有4条对称轴,扇形有一条对称轴.
7、表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比.百分数通常用"%"来表示.百分号是表示百分数的符号.
农业收成经常用“成数”来表示,“一成”表示十分之一,也就是百分之十.
6 纳税
纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家.
缴纳的税款叫应纳税款.
应纳税额与各种收入的(销售额、营业额、应纳税所得额 ……)的比率叫做税率.
* 利息
存入银行的钱叫做本金.
取款时银行多支付的钱叫做利息.
利息与本金的比值叫做利率.
利息=本金×利率×时间
7、扇形统计图
用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数.
优点:很清楚地表示出各部分同总数之间的关系.
8、鸡兔问题:已知“鸡兔”的总头数和总腿数.求“鸡”和“兔”各多少只的一类应用题.通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数.
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
9、分数和百分数的应用
(1) 分数加减法应用题:
分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数.
()2分数乘法应用题:
是指已知一个数,求它的几分之几是多少的应用题.
特征:已知单位“1”的量和分率,求与分率所对应的实际数量.
解题关键:准确判断单位“1”的量.找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式.
(3) 分数除法应用题:
求一个数是另一个数的几分之几(或百分之几)是多少.
特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几.“一个数”是比较量,“另一个数”是标准量.求分率或百分率,也就是求他们的倍数关系.
解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数.
甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙.
甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几).关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 .
已知一个数的几分之几(或百分之几 ) ,求这个数.
特征:已知一个实际数量和它相对应的分率,求单位“1”的量.
解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际
数量.
(4) 发芽率……
发芽率=发芽种子数/试验种子数×100%
产品的合格率=合格的产品数/产品总数×100%
(5)在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配.这种分配的方法通常叫做按比例分配.
这是人教版六年上涉及到的一些概念及解题要领,望采纳:
1、乘积是1的两个数互为倒数.
2、比的意义和性质
(1) 比的意义
两个数相除又叫做两个数的比.
“:”是比号,读作“比”.比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商.
比值通常用分数表示,也可以用小数表示,有时也可能是整数.
比的后项不能是零.
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值.
(2)比的性质
比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质.
(3) 求比值和化简比
求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数.
根据比的基本性质可以把比化成最简单的整数比.它的结果必须是一个最简比,即前、后项是互质的数.
3、圆
(1) 圆的认识
平面上的一种曲线图形.
圆中心的一点叫做圆心.一般用字母o表示.
半径:连接圆心和圆上任意一点的线段叫做半径.一般用r表示.
在同一个圆里,有无数条半径,每条半径的长度都相等.
通过圆心并且两端都在圆上的线段叫做直径.一般用d表示.
同一个圆里有无数条直径,所有的直径都相等.
同一个圆里,直径等于两个半径的长度,即d=2r.
圆的大小由半径决定. 圆有无数条对称轴.
(2)圆的画法
把圆规的两脚分开,定好两脚间的距离(即半径);
把有针尖的一只脚固定在一点(即圆心)上;
把装有铅笔尖的一只脚旋转一周,就画出一个圆.
(3) 圆的周长
围成圆的曲线的长叫做圆的周长.
把圆的周长和直径的比值叫做圆周率.用字母∏表示.
(4) 圆的面积
圆所占平面的大小叫做圆的面积.
(5)计算公式
d=2r
r=d/2
c=∏d
c=2∏r
s=∏r²
4、扇形
(1) 扇形的认识
一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形.
圆上AB两点之间的部分叫做弧,读作“弧AB”.
顶点在圆心的角叫做圆心角.
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关.
扇形有一条对称轴.
(2) 计算公式 (但小学部分所给的扇形都是特殊的,即几分之几圆,如:四分之一圆)
s=n∏r²/360
5、环形
(1) 特征
由两个半径不相等的同心圆相减而成,有无数条对称轴.
(2) 计算公式
s=∏(R²-r²)
6、轴对称图形
特征: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.
正方形有4条对称轴, 长方形有2条对称轴.
等腰三角形有2条对称轴,等边三角形有3条对称轴.
等腰梯形有一条对称轴,圆有无数条对称轴.
菱形有4条对称轴,扇形有一条对称轴.
7、表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比.百分数通常用"%"来表示.百分号是表示百分数的符号.
农业收成经常用“成数”来表示,“一成”表示十分之一,也就是百分之十.
6 纳税
纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家.
缴纳的税款叫应纳税款.
应纳税额与各种收入的(销售额、营业额、应纳税所得额 ……)的比率叫做税率.
* 利息
存入银行的钱叫做本金.
取款时银行多支付的钱叫做利息.
利息与本金的比值叫做利率.
利息=本金×利率×时间
7、扇形统计图
用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数.
优点:很清楚地表示出各部分同总数之间的关系.
8、鸡兔问题:已知“鸡兔”的总头数和总腿数.求“鸡”和“兔”各多少只的一类应用题.通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数.
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
9、分数和百分数的应用
(1) 分数加减法应用题:
分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数.
()2分数乘法应用题:
是指已知一个数,求它的几分之几是多少的应用题.
特征:已知单位“1”的量和分率,求与分率所对应的实际数量.
解题关键:准确判断单位“1”的量.找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式.
(3) 分数除法应用题:
求一个数是另一个数的几分之几(或百分之几)是多少.
特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几.“一个数”是比较量,“另一个数”是标准量.求分率或百分率,也就是求他们的倍数关系.
解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数.
甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙.
甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几).关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 .
已知一个数的几分之几(或百分之几 ) ,求这个数.
特征:已知一个实际数量和它相对应的分率,求单位“1”的量.
解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际
数量.
(4) 发芽率……
发芽率=发芽种子数/试验种子数×100%
产品的合格率=合格的产品数/产品总数×100%
(5)在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配.这种分配的方法通常叫做按比例分配.
相关标签: 六年级 数学 概念
相关问答