数学
初一下学期数学二元一次方程练习题

2019-04-02

初一下学期数学二元一次方程练习题
优质解答
初一数学下学期8.1 二元一次方程组练习题
根据题意列出方程组:
(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?
(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?
二元一次方程组复习练习题
一、填空题
1、关于X的方程 ,当 __________时,是一元一次方程; 当 ___________时,它是二元一次方程.
2、已知 ,用 表示 的式子是___________;用 表示 的式子是___________.当 时 ___________;写出它的2组正整数解______________.
3、若方程 2x + y = 是二元一次方程,则mn= .
4、已知 与 有相同的解,则 = __ , = .
5、已知 ,那么 的值是 .
6、 如果 那么 _______.
7、若(x—y)2+|5x—7y-2|=0,则x=________,y=__________ .
8、已知y=kx+b,如果x=4时,y=15;x=7时,y=24,则k= ;b= .
9、已知 是方程 的一个解,则 .
10、二元一次方程4x+y=20 的正整数解是______________________.
11、从1分、2分、5分的硬币中取出5分钱,共同__________种不同的取法(不论顺序).
12、方程组 的解是_____________________.
13、如果二元一次方程组 的解是 ,那么a+b=_________.
14、方程组 的解是
15、已知6x-3y=16,并且5x+3y=6,则4x-3y的值为 .
16、若 是关于 、 的方程 的一个解,且 ,则 = .
17、已知等腰三角形一腰上的中线将它的周长分为63和36两部分,则它的腰长是_________.底边长为___________.
18、已知点A(-y-15,-15-2x),点B(3x,9y)关于原点对称,则x的值是______,y的值是_________.
二、选择题.
1、在方程组 、 、 、 、 、 中,是二元一次方程组的有( )
A、2个 B、3个 C、4个 D、5个
2、二元一次方程组 的解是( )
A. B. C. D.
3、三个二元一次方程2x+5y—6=0,3x—2y—9=0,y=kx—9有公共解的条件是k=( )
A.4 B.3 C.2 D.1
4、如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为( )
A. 400 cm2 B. 500 cm2 C. 600 cm2 D. 675 cm2
5、一杯可乐售价1.8元,商家为了促销,顾客每买一杯可乐获一张奖券,每三张奖券可兑换一杯可乐,则每张奖券相当于( )
(A)0.6元 (B)0.5元 (C)0.45元 (D)0.3元
6、已知 是方程组 的解,则 、 间的关系是( )
A、 B、 C、 D、
7、为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是( )
A B C D
8、设A、B两镇相距 千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为 千米/小时、 千米/小时,①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求 、 、 .根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是( )
A、 B、 C、 D、
三、解答题.
1、在y= 中,当 时y的值是 , 时y的值是 , 时y的值是 ,求 的值,并求 时y的值.
2、有三把楼梯,分别是五步梯、七步梯、九步梯,每攀沿一步阶梯上升的高度是一致的.每把楼梯的扶杆长(即梯长)、顶档宽、底档宽如图所示,并把横档与扶杆榫合处称作联结点(如点A).
(1) 通过计算,补充填写下表:
楼梯
种类 两扶杆总长(米) 横档总长(米) 联结点数(个)
五步梯 4 2.0 10
七步梯
九步梯
(2) 一把楼梯的成本由材料费和加工费组成,假定加工费以每个个联结点1元计算,而材料费中扶杆的单价与横档的单价不相等(材料损耗及其它因素忽略不计).现已知一把五步梯、七步梯的成本分别是26元、36元,试求出一把九步梯的成本.
3、解下列方程组
(1) ⑵
4、甲,乙联赛中,某足球队按足协的计分规则与本队奖励方案如下表.
胜一场 平一场 负一场
积分 3 1 0
奖金(元/人) 1500 700 0
当比赛进行到第12轮结束时,该队负3场,共积19分.
问:(1)该队胜,平各几场?(2)若每赛一场,每名参赛队员均得出场费500元,试求该队每名队员在12轮比赛结束后总收入.
1.二元一次方程4x-3y=12,当x=0,1,2,3时,y=______.
2.在x+3y=3中,若用x表示y,则y=______,用y表示x,则x=______.
4.把方程3(x+5)=5(y-1)+3化成二元一次方程的一般形式为______.
(1)方程y=2x-3的解有______;
(2)方程3x+2y=1的解有______;
(3)方程y=2x-3与3x+2y=1的公共解是______.
9.方程x+y=3有______组解,有______组正整数解,它们是______.
11.已知方程(k2-1)x2+(k+1)x+(k-7)y=k+2.当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程.
12.对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=______;当y=0时,则x=______.
13.方程2x+y=5的正整数解是______.
14.若(4x-3)2+|2y+1|=0,则x+2=______.
的解.
当k为______时,方程组没有解.
______.
(二)选择
24.在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则[ ]
A.y=5x-3;
B.y=-x-3;
D.y=-5x-3.
[ ]
26.与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是[ ]
A.10x+2y=4;
B.4x-y=7;
C.20x-4y=3;
D.15x-3y=6.
[ ]
A.m=9;
B.m=6;
C.m=-6;
D.m=-9.
28.若5x2ym与4xn+m-1y是同类项,则m2-n的值为 [ ]
A.1;
B.-1;
C.-3;
D.以上答案都不对.
29.方程2x+y=9在正整数范围内的解有[ ]
A.1个;
B.2个;
C.3个;
D.4个.
[ ]
A.4;
B.2;
C.-4;
D.以上答案都不对.
二元一次方程组•综合创新练习题
一、综合题
【Z,3,二】
【Z,3,二】
3.已知4ax+yb2与-a3by是同类项求2x-y的值.
【Z,3,二】
4.若|x-2|+(2x-3y+5)2=0,求x和y的值.
【N,3,三】
5.若方程2x2m+3+3y5n-4=7是x,y的二元一次方程组,求m2+n的值.
【Z,3,二】
二、创新题
1.已知x和y互为相反数,且(x+y+4)(x-y)=4,求x和y的值.
【N,4,三】
2.求方程x+2y=7在自然数范围内的解.
【N,4,三】
初一数学下学期8.1 二元一次方程组练习题
根据题意列出方程组:
(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?
(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?
二元一次方程组复习练习题
一、填空题
1、关于X的方程 ,当 __________时,是一元一次方程; 当 ___________时,它是二元一次方程.
2、已知 ,用 表示 的式子是___________;用 表示 的式子是___________.当 时 ___________;写出它的2组正整数解______________.
3、若方程 2x + y = 是二元一次方程,则mn= .
4、已知 与 有相同的解,则 = __ , = .
5、已知 ,那么 的值是 .
6、 如果 那么 _______.
7、若(x—y)2+|5x—7y-2|=0,则x=________,y=__________ .
8、已知y=kx+b,如果x=4时,y=15;x=7时,y=24,则k= ;b= .
9、已知 是方程 的一个解,则 .
10、二元一次方程4x+y=20 的正整数解是______________________.
11、从1分、2分、5分的硬币中取出5分钱,共同__________种不同的取法(不论顺序).
12、方程组 的解是_____________________.
13、如果二元一次方程组 的解是 ,那么a+b=_________.
14、方程组 的解是
15、已知6x-3y=16,并且5x+3y=6,则4x-3y的值为 .
16、若 是关于 、 的方程 的一个解,且 ,则 = .
17、已知等腰三角形一腰上的中线将它的周长分为63和36两部分,则它的腰长是_________.底边长为___________.
18、已知点A(-y-15,-15-2x),点B(3x,9y)关于原点对称,则x的值是______,y的值是_________.
二、选择题.
1、在方程组 、 、 、 、 、 中,是二元一次方程组的有( )
A、2个 B、3个 C、4个 D、5个
2、二元一次方程组 的解是( )
A. B. C. D.
3、三个二元一次方程2x+5y—6=0,3x—2y—9=0,y=kx—9有公共解的条件是k=( )
A.4 B.3 C.2 D.1
4、如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为( )
A. 400 cm2 B. 500 cm2 C. 600 cm2 D. 675 cm2
5、一杯可乐售价1.8元,商家为了促销,顾客每买一杯可乐获一张奖券,每三张奖券可兑换一杯可乐,则每张奖券相当于( )
(A)0.6元 (B)0.5元 (C)0.45元 (D)0.3元
6、已知 是方程组 的解,则 、 间的关系是( )
A、 B、 C、 D、
7、为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是( )
A B C D
8、设A、B两镇相距 千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为 千米/小时、 千米/小时,①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求 、 、 .根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是( )
A、 B、 C、 D、
三、解答题.
1、在y= 中,当 时y的值是 , 时y的值是 , 时y的值是 ,求 的值,并求 时y的值.
2、有三把楼梯,分别是五步梯、七步梯、九步梯,每攀沿一步阶梯上升的高度是一致的.每把楼梯的扶杆长(即梯长)、顶档宽、底档宽如图所示,并把横档与扶杆榫合处称作联结点(如点A).
(1) 通过计算,补充填写下表:
楼梯
种类 两扶杆总长(米) 横档总长(米) 联结点数(个)
五步梯 4 2.0 10
七步梯
九步梯
(2) 一把楼梯的成本由材料费和加工费组成,假定加工费以每个个联结点1元计算,而材料费中扶杆的单价与横档的单价不相等(材料损耗及其它因素忽略不计).现已知一把五步梯、七步梯的成本分别是26元、36元,试求出一把九步梯的成本.
3、解下列方程组
(1) ⑵
4、甲,乙联赛中,某足球队按足协的计分规则与本队奖励方案如下表.
胜一场 平一场 负一场
积分 3 1 0
奖金(元/人) 1500 700 0
当比赛进行到第12轮结束时,该队负3场,共积19分.
问:(1)该队胜,平各几场?(2)若每赛一场,每名参赛队员均得出场费500元,试求该队每名队员在12轮比赛结束后总收入.
1.二元一次方程4x-3y=12,当x=0,1,2,3时,y=______.
2.在x+3y=3中,若用x表示y,则y=______,用y表示x,则x=______.
4.把方程3(x+5)=5(y-1)+3化成二元一次方程的一般形式为______.
(1)方程y=2x-3的解有______;
(2)方程3x+2y=1的解有______;
(3)方程y=2x-3与3x+2y=1的公共解是______.
9.方程x+y=3有______组解,有______组正整数解,它们是______.
11.已知方程(k2-1)x2+(k+1)x+(k-7)y=k+2.当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程.
12.对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=______;当y=0时,则x=______.
13.方程2x+y=5的正整数解是______.
14.若(4x-3)2+|2y+1|=0,则x+2=______.
的解.
当k为______时,方程组没有解.
______.
(二)选择
24.在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则[ ]
A.y=5x-3;
B.y=-x-3;
D.y=-5x-3.
[ ]
26.与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是[ ]
A.10x+2y=4;
B.4x-y=7;
C.20x-4y=3;
D.15x-3y=6.
[ ]
A.m=9;
B.m=6;
C.m=-6;
D.m=-9.
28.若5x2ym与4xn+m-1y是同类项,则m2-n的值为 [ ]
A.1;
B.-1;
C.-3;
D.以上答案都不对.
29.方程2x+y=9在正整数范围内的解有[ ]
A.1个;
B.2个;
C.3个;
D.4个.
[ ]
A.4;
B.2;
C.-4;
D.以上答案都不对.
二元一次方程组•综合创新练习题
一、综合题
【Z,3,二】
【Z,3,二】
3.已知4ax+yb2与-a3by是同类项求2x-y的值.
【Z,3,二】
4.若|x-2|+(2x-3y+5)2=0,求x和y的值.
【N,3,三】
5.若方程2x2m+3+3y5n-4=7是x,y的二元一次方程组,求m2+n的值.
【Z,3,二】
二、创新题
1.已知x和y互为相反数,且(x+y+4)(x-y)=4,求x和y的值.
【N,4,三】
2.求方程x+2y=7在自然数范围内的解.
【N,4,三】
相关问答