优质解答
北师大版初中数学定理知识点汇总八年级(上册)
第一章 勾股定理
※直角三角形两直角边的平和等于斜边的平方.即:
(由直角三角形得到边的关系)
如果三角形的三边长a,b,c满足 ,那么这个三角形是直角三角形.
满足条件 的三个正整数,称为勾股数.常见的勾股数组有:(3,4,5);(6,8,10);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)
第二章 实数
※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 .0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根.
※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根.
※正数有两个平方根(一正一负);0只有一个平方根,就是它本身;负数没有平方根.
※正数的立方根是正数;0的立方根是0;负数的立方根是负数.
第三章 图形的平移与旋转
平移:在平面内,将一个图形沿某个方向移动一定距离,这样的图形运动称为平移.
平移的基本性质:经过平移,对应线段、对应角分别相等;对应点所连的线段平行且相等.
旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.
这个定点叫旋转中心,转动的角度叫旋转角.
旋转的性质:旋转后的图形与原图形的大小和形状相同;
旋转前后两个图形的对应点到旋转中心的距离相等;
对应点到旋转中心的连线所成的角度彼此相等.
(例:如图所示,点D、E、F分别为点A、B、C的对应点,经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.)
第四章 四平边形性质探索
※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线.
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分.
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形.
两组对边分别相等的四边形是平行四边形.
一组对边平行且相等的四边形是平行四边形.
两条对角线互相平分的四边形是平行四边形.
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等.这个距离称为平行线之间的距离.
菱形的定义:一组邻边相等的平行四边形叫做菱形.
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角.
菱形是轴对称图形,每条对角线所在的直线都是对称轴.
※菱形的判别方法:一组邻边相等的平行四边形是菱形.
对角线互相垂直的平行四边形是菱形.
四条边都相等的四边形是菱形.
※矩形的定义:有一个角是直角的平行四边形叫矩形.矩形是特殊的平行四边形.
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角.(矩形是轴对称图形,有两条对称轴)
※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义).
对角线相等的平行四边形是矩形.
四个角都相等的四边形是矩形.
※推论:直角三角形斜边上的中线等于斜边的一半.
正方形的定义:一组邻边相等的矩形叫做正方形.
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质.(正方形是轴对称图形,有两条对称轴)
※正方形常用的判定:
有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形.
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):
※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形.
※两条腰相等的梯形叫做等腰梯形.
※一条腰和底垂直的梯形叫做直角梯形.
※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等.
同一底上的两个内角相等的梯形是等腰梯形.
※多边形内角和:n边形的内角和等于(n-2)•180°
※多边形的外角和都等于360°
※在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图开叫做中心对称图形.
※中心对称图形上的每一对对应点所连成的线段被对称中心平分.
第五章 位置的确定
※平面直角坐标系概念:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系,水平的数轴叫x轴或横轴;铅垂的数轴叫y轴或纵轴,两数轴的交点O称为原点.
※点的坐标:在平面内一点P,过P向x轴、y轴分别作垂线,垂足在x轴、y轴上对应的数a、b分别叫P点的横坐标和纵坐标,则有序实数对(a、b)叫做P点的坐标.
※在直角坐标系中如何根据点的坐标,找出这个点(如图4所示),方法是由P(a、b),在x轴上找到坐标为a的点A,过A作x轴的垂线,再在y轴上找到坐标为b的点B,过B作y轴的垂线,两垂线的交点即为所找的P点.
※如何根据已知条件建立适当的直角坐标系?
根据已知条件建立坐标系的要求是尽量使计算方便,一般地没有明确的方法,但有以下几条常用的方法:①以某已知点为原点,使它坐标为(0,0);②以图形中某线段所在直线为x轴(或y轴);③以已知线段中点为原点;④以两直线交点为原点;⑤利用图形的轴对称性以对称轴为y轴等.
※图形“纵横向伸缩”的变化规律:
A、将图形上各个点的坐标的纵坐标不变,而横坐标分别变成原来的n倍时,所得的图形比原来的图形在横向:①当n>1时,伸长为原来的n倍;②当0
北师大版初中数学定理知识点汇总八年级(上册)
第一章 勾股定理
※直角三角形两直角边的平和等于斜边的平方.即:
(由直角三角形得到边的关系)
如果三角形的三边长a,b,c满足 ,那么这个三角形是直角三角形.
满足条件 的三个正整数,称为勾股数.常见的勾股数组有:(3,4,5);(6,8,10);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)
第二章 实数
※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 .0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根.
※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根.
※正数有两个平方根(一正一负);0只有一个平方根,就是它本身;负数没有平方根.
※正数的立方根是正数;0的立方根是0;负数的立方根是负数.
第三章 图形的平移与旋转
平移:在平面内,将一个图形沿某个方向移动一定距离,这样的图形运动称为平移.
平移的基本性质:经过平移,对应线段、对应角分别相等;对应点所连的线段平行且相等.
旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.
这个定点叫旋转中心,转动的角度叫旋转角.
旋转的性质:旋转后的图形与原图形的大小和形状相同;
旋转前后两个图形的对应点到旋转中心的距离相等;
对应点到旋转中心的连线所成的角度彼此相等.
(例:如图所示,点D、E、F分别为点A、B、C的对应点,经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.)
第四章 四平边形性质探索
※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线.
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分.
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形.
两组对边分别相等的四边形是平行四边形.
一组对边平行且相等的四边形是平行四边形.
两条对角线互相平分的四边形是平行四边形.
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等.这个距离称为平行线之间的距离.
菱形的定义:一组邻边相等的平行四边形叫做菱形.
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角.
菱形是轴对称图形,每条对角线所在的直线都是对称轴.
※菱形的判别方法:一组邻边相等的平行四边形是菱形.
对角线互相垂直的平行四边形是菱形.
四条边都相等的四边形是菱形.
※矩形的定义:有一个角是直角的平行四边形叫矩形.矩形是特殊的平行四边形.
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角.(矩形是轴对称图形,有两条对称轴)
※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义).
对角线相等的平行四边形是矩形.
四个角都相等的四边形是矩形.
※推论:直角三角形斜边上的中线等于斜边的一半.
正方形的定义:一组邻边相等的矩形叫做正方形.
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质.(正方形是轴对称图形,有两条对称轴)
※正方形常用的判定:
有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形.
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):
※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形.
※两条腰相等的梯形叫做等腰梯形.
※一条腰和底垂直的梯形叫做直角梯形.
※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等.
同一底上的两个内角相等的梯形是等腰梯形.
※多边形内角和:n边形的内角和等于(n-2)•180°
※多边形的外角和都等于360°
※在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图开叫做中心对称图形.
※中心对称图形上的每一对对应点所连成的线段被对称中心平分.
第五章 位置的确定
※平面直角坐标系概念:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系,水平的数轴叫x轴或横轴;铅垂的数轴叫y轴或纵轴,两数轴的交点O称为原点.
※点的坐标:在平面内一点P,过P向x轴、y轴分别作垂线,垂足在x轴、y轴上对应的数a、b分别叫P点的横坐标和纵坐标,则有序实数对(a、b)叫做P点的坐标.
※在直角坐标系中如何根据点的坐标,找出这个点(如图4所示),方法是由P(a、b),在x轴上找到坐标为a的点A,过A作x轴的垂线,再在y轴上找到坐标为b的点B,过B作y轴的垂线,两垂线的交点即为所找的P点.
※如何根据已知条件建立适当的直角坐标系?
根据已知条件建立坐标系的要求是尽量使计算方便,一般地没有明确的方法,但有以下几条常用的方法:①以某已知点为原点,使它坐标为(0,0);②以图形中某线段所在直线为x轴(或y轴);③以已知线段中点为原点;④以两直线交点为原点;⑤利用图形的轴对称性以对称轴为y轴等.
※图形“纵横向伸缩”的变化规律:
A、将图形上各个点的坐标的纵坐标不变,而横坐标分别变成原来的n倍时,所得的图形比原来的图形在横向:①当n>1时,伸长为原来的n倍;②当0