数学
谁出三道可以用三种方法解的一元二次方程?是一题三解,要三道哦.一个一元二次方程用三种不同的方法解.加油

2019-05-28

谁出三道可以用三种方法解的一元二次方程?
是一题三解,要三道哦.一个一元二次方程用三种不同的方法解.加油
优质解答
一元二次方程有四个特点:(1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)
一般解法
1.配方法
  (可解全部一元二次方程)
  如:解方程:x^2+2x-3=0
把常数项移项得:x^2+2x=3
  等式两边同时加1(构成完全平方式)得:x^2+2x+1=4
  因式分解得:(x+1)^2=4
  解得:x1=-3,x2=1
  用配方法解一元二次方程小口诀
  二次系数化为一
  常数要往右边移
  一次系数一半方
  两边加上最相当
2.公式法
  (可解全部一元二次方程)
  首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根
  1.当Δ=b^2-4ac0时 x有两个不相同的实数根
  当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a
  来求得方程的根
3.因式分解法
  (可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”.
  如:解方程:x^2+2x+1=0
利用完全平方公式因式分解得:(x+1﹚^2=0
  解得:x1=x2=-1
4.直接开平方法
  (可解部分一元二次方程)
5.代数法
  (可解全部一元二次方程)
  ax^2+bx+c=0
  同时除以a,可变为x^2+bx/a+c/a=0
  设:x=y-b/2
  方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
  再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0
  y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]
一元二次方程有四个特点:(1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)
一般解法
1.配方法
  (可解全部一元二次方程)
  如:解方程:x^2+2x-3=0
把常数项移项得:x^2+2x=3
  等式两边同时加1(构成完全平方式)得:x^2+2x+1=4
  因式分解得:(x+1)^2=4
  解得:x1=-3,x2=1
  用配方法解一元二次方程小口诀
  二次系数化为一
  常数要往右边移
  一次系数一半方
  两边加上最相当
2.公式法
  (可解全部一元二次方程)
  首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根
  1.当Δ=b^2-4ac0时 x有两个不相同的实数根
  当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a
  来求得方程的根
3.因式分解法
  (可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”.
  如:解方程:x^2+2x+1=0
利用完全平方公式因式分解得:(x+1﹚^2=0
  解得:x1=x2=-1
4.直接开平方法
  (可解部分一元二次方程)
5.代数法
  (可解全部一元二次方程)
  ax^2+bx+c=0
  同时除以a,可变为x^2+bx/a+c/a=0
  设:x=y-b/2
  方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
  再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0
  y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]
相关问答