(2013•淄博二模)在平面直角坐标系xoy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是( )A.−43B.−54C.−35D.−53
2019-04-29
(2013•淄博二模)在平面直角坐标系xoy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是( )
A.−
B.−
C.−
D.−
优质解答
∵圆C的方程为x2+y2-8x+15=0,整理得:(x-4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;
又直线y=kx+2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,
∴只需圆C′:(x-4)2+y2=4与直线y=kx+2有公共点即可.
设圆心C(4,0)到直线y=kx+2的距离为d,
则d=≤2,即3k2≤-4k,
∴-≤k≤0.
∴k的最小值是−.
故选A.
∵圆C的方程为x2+y2-8x+15=0,整理得:(x-4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;
又直线y=kx+2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,
∴只需圆C′:(x-4)2+y2=4与直线y=kx+2有公共点即可.
设圆心C(4,0)到直线y=kx+2的距离为d,
则d=≤2,即3k2≤-4k,
∴-≤k≤0.
∴k的最小值是−.
故选A.