数学代数计算证明证明:从一开始的任意多连续自然数三次方的和为完全平方数从“1”开始
2019-05-07
数学代数计算证明
证明:从一开始的任意多连续自然数三次方的和为完全平方数
从“1”开始
优质解答
结论:1^3+2^3+...+N^3=[N(N+1)/2]^2
证明:
1^2+2^2+3^2+……+N^2=N(N+1)(2N+1)/6
利用立方差公式
N^3-(N-1)^3=1*[N^2+(N-1)^2+N(N-1)]
=N^2+(N-1)^2+N^2-N
=2*N^2+(N-1)^2-N
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
.
N^3-(N-1)^3=2*N^2+(N-1)^2-N
各等式全相加
N^3-1^3=2*(2^2+3^2+...+N^2)+[1^2+2^2+...+(N-1)^2]-(2+3+4+...+N)
N^3-1=2*(1^2+2^2+3^2+...+N^2)-2+[1^2+2^2+...+(N-1)^2+N^2]-N^2-(2+3+4+...+N)
N^3-1=3*(1^2+2^2+3^2+...+N^2)-2-N^2-(1+2+3+...+N)+1
N^3-1=3(1^2+2^2+...+N^2)-1-N^2-N(N+1)/2
3(1^2+2^2+...+N^2)=N^3+N^2+N(N+1)/2=(N/2)(2N^2+2N+N+1)
=(N/2)(N+1)(2N+1)
1^2+2^2+3^2+...+N^2=N(N+1)(2N+1)/6
1^3+2^3+3^3+……+N^3=[N(N+1)/2]^2
(N+1)^4-N^4=[(N+1)^2+N^2][(N+1)^2-N^2]
=(2N^2+2N+1)(2N+1)
=4N^3+6N^2+4N+1
2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
.
(N+1)^4-N^4=4*N^3+6*N^2+4*N+1
各式相加有
(N+1)^4-1=4*(1^3+2^3+3^3...+N^3)+6*(1^2+2^2+...+N^2)+4*(1+2+3+...+N)+N
4*(1^3+2^3+3^3+...+N^3)=(N+1)^4-1+6*[N(N+1)(2N+1)/6]+4*[(1+N)N/2]+N
=[N(N+1)]^2
1^3+2^3+...+N^3=[N(N+1)/2]^2
结论:1^3+2^3+...+N^3=[N(N+1)/2]^2
证明:
1^2+2^2+3^2+……+N^2=N(N+1)(2N+1)/6
利用立方差公式
N^3-(N-1)^3=1*[N^2+(N-1)^2+N(N-1)]
=N^2+(N-1)^2+N^2-N
=2*N^2+(N-1)^2-N
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
.
N^3-(N-1)^3=2*N^2+(N-1)^2-N
各等式全相加
N^3-1^3=2*(2^2+3^2+...+N^2)+[1^2+2^2+...+(N-1)^2]-(2+3+4+...+N)
N^3-1=2*(1^2+2^2+3^2+...+N^2)-2+[1^2+2^2+...+(N-1)^2+N^2]-N^2-(2+3+4+...+N)
N^3-1=3*(1^2+2^2+3^2+...+N^2)-2-N^2-(1+2+3+...+N)+1
N^3-1=3(1^2+2^2+...+N^2)-1-N^2-N(N+1)/2
3(1^2+2^2+...+N^2)=N^3+N^2+N(N+1)/2=(N/2)(2N^2+2N+N+1)
=(N/2)(N+1)(2N+1)
1^2+2^2+3^2+...+N^2=N(N+1)(2N+1)/6
1^3+2^3+3^3+……+N^3=[N(N+1)/2]^2
(N+1)^4-N^4=[(N+1)^2+N^2][(N+1)^2-N^2]
=(2N^2+2N+1)(2N+1)
=4N^3+6N^2+4N+1
2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
.
(N+1)^4-N^4=4*N^3+6*N^2+4*N+1
各式相加有
(N+1)^4-1=4*(1^3+2^3+3^3...+N^3)+6*(1^2+2^2+...+N^2)+4*(1+2+3+...+N)+N
4*(1^3+2^3+3^3+...+N^3)=(N+1)^4-1+6*[N(N+1)(2N+1)/6]+4*[(1+N)N/2]+N
=[N(N+1)]^2
1^3+2^3+...+N^3=[N(N+1)/2]^2