优质解答
1+1=2 在现代的精密科学中,特别在数学和数理逻辑中,广泛地运用着公理法.公理法是从某一科学的许多原理中,分出一部分最基本的概念和命题,对这些基本概念不下
定义,而这一学科的所有其它概念都必须直接或间接由它们下定义;对这些基本命题(也叫公理)也不给予论证,而这一学科中的所有其它命题却必须直接或间接由它们中推出.
这样构成的理论体系就叫公理体系,构成这种公理体系的方法就叫公理法.
1+1=2 就是数学当中的公理,在数学中是不需要证明的.又因为1+1=2是一切数学定理的基础,所以它也是无法用数学的方法证明的. 至于“1+1为什么等于2?
”作为一个问题,没要求大家必须用数学的方法证明,其实只要说明为什么1+1=2就可以了,可以说这是定义,也可以说这是公理.不过用反证法还是可以证明的:假设1+
1不等于2,则数学就是一锅粥,凡是用到数学的地方都是一锅粥,人类社会就乱了套了,所以1+1必须等于2.1+1=2看似简单,却对于人类认识世界有非同寻常的意义
. 人类认识世界的过程就像一个小孩滚雪球的过程:第一步,小孩先要用双手捧一捧雪,这一捧雪就相当于人类对世界的感性认识.第二步,小孩把手里的雪捏紧,成为一个小
雪球,这个小雪球就相当于人类对感性认识进行加工,形成了概念.于是就有了1.第三步,小孩把雪球放在地上,发现雪球可以粘地上的雪,这就相当于人类的理性认识.雪可
以粘雪,相当于1+1=2.第四步,小孩把粘了雪的雪球在雪地上滚一下,发现雪球粘雪后越来越大,这就相当于人类认识世界的高级阶段,可以进入良性循环了.相当于2+
1=3.1,2,3可以排成一个最简单的数列,但是可以演绎至无穷. 有了1只是有了概念,有了1+1=2才有了数学,有了2+1=3才开始了数学的无穷变化.
物理学与1+1=2的关系 人类认识世界的过程是一个由感性到理性,有已知到未知的过程.
在数学当中已知1、2、3,则可以至于无穷,什么是物理学当中的1、2、3呢?通常它们代表着:质量、长度、时间等基本物理概念相当于1,它们是组成物理学宏伟大厦的
砖和瓦;牛顿运动定律相当于2,它使我们有了真正的物理学和科学的物理分析方法;力学的相对性原理相当于3,使牛顿运动定律可以广泛应用.在经典物理学中一切都是确定
无疑的,有了已知条件,我们就可以推出未知.当年徐迟的一篇报告文学,中国人知道了陈景润和歌德巴赫猜想.
那么,什么是歌德巴赫猜想呢? 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士.1742年,哥德巴赫在
教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和.如6=3+3,12=5+7等等.公元1742年6月7日哥德巴赫写信给当时的大数学家
欧拉,提出了以下的猜想: (a)任何一个>=6之偶数,都可以表示成两个奇质数之和. (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和. 这就是着名的
哥德巴赫猜想.欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明.叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起
了许多数学家的注意.从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3,
8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18
= 5 + 13, ……等等.有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立.但严格的数学证明尚待数学家的努力.
从此,这道著名的数学难题引起了世界上成千上万数学家的注意.200年过去了,没有人证明它.哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠".
人们对哥德巴赫猜想难题的热情,历经两百多年而不衰.世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解. 到了20世纪20年代,才有人开始向它
靠近.1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99).这种缩小包围圈的办法很管用,科学家们于是从(9十
9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想.
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.”
通常都简称这个结果为大偶数可表示为 “1 + 2”的形式. 在陈景润之前,关於偶数可表示为 s个质数的乘积与t个质数的乘积之和(简称“s +
t”问题)之进展情况如下: 1920年,挪威的布朗证明了‘“9 + 9”. 1924年,德国的拉特马赫证明了“7 + 7”.
1932年,英国的埃斯特曼证明了“6 + 6”. 1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 +
366”. 1938年,苏联的布赫夕太勃证明了“5 + 5”. 1940年,苏联的布赫夕太勃证明了“4 + 4”. 1948年,匈牙利的瑞尼证明了“1 +
c”,其中c是一很大的自然数. 1956年,中国的王元证明了“3 + 4”. 1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”.
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”. 1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及
意大利的朋比利证明了“1 + 3 ”. 1966年,中国的陈景润证明了 “1 + 2 ”.
从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年.
自"陈氏定理"诞生至今的30多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功.
布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和:
2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-
2i),i=1,2,…;3j和(2n-3j),j= 2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2
都是素数,即得n=p1+p2,这样哥德巴赫猜想就被证明了.前一部分的叙述是很自然的想法.关键就是要证明'至少还有一对自然数未被筛去'.目前世界上谁都未能对这
一部分加以证明.要能证明,这个猜想也就解决了. 1+1=?不就是等于二吗?是的,的确是这样.但是这个二却不可小觊.2可以分解成1+1、0.1+1.9、0.5
+1.5……1里面的成分是:0.5+0.5、0.1+0.9、0.56+0.44…换个角度1+1虽然等于二但是却有许多含义.譬如说1+1=2分解后就是:0.5
+0.5+1=2
其中0.5+0.5=天生+后天培养;1=汗水.这是十分容易理解的一个公式.当然要是换个角度,聪明的人就知道凡事无绝对.答案不可能只有1个,含义亦是如此.
1+1从脑筋急转来说也可以等于一个数字“王”、田、甲.
1+1=2 在现代的精密科学中,特别在数学和数理逻辑中,广泛地运用着公理法.公理法是从某一科学的许多原理中,分出一部分最基本的概念和命题,对这些基本概念不下
定义,而这一学科的所有其它概念都必须直接或间接由它们下定义;对这些基本命题(也叫公理)也不给予论证,而这一学科中的所有其它命题却必须直接或间接由它们中推出.
这样构成的理论体系就叫公理体系,构成这种公理体系的方法就叫公理法.
1+1=2 就是数学当中的公理,在数学中是不需要证明的.又因为1+1=2是一切数学定理的基础,所以它也是无法用数学的方法证明的. 至于“1+1为什么等于2?
”作为一个问题,没要求大家必须用数学的方法证明,其实只要说明为什么1+1=2就可以了,可以说这是定义,也可以说这是公理.不过用反证法还是可以证明的:假设1+
1不等于2,则数学就是一锅粥,凡是用到数学的地方都是一锅粥,人类社会就乱了套了,所以1+1必须等于2.1+1=2看似简单,却对于人类认识世界有非同寻常的意义
. 人类认识世界的过程就像一个小孩滚雪球的过程:第一步,小孩先要用双手捧一捧雪,这一捧雪就相当于人类对世界的感性认识.第二步,小孩把手里的雪捏紧,成为一个小
雪球,这个小雪球就相当于人类对感性认识进行加工,形成了概念.于是就有了1.第三步,小孩把雪球放在地上,发现雪球可以粘地上的雪,这就相当于人类的理性认识.雪可
以粘雪,相当于1+1=2.第四步,小孩把粘了雪的雪球在雪地上滚一下,发现雪球粘雪后越来越大,这就相当于人类认识世界的高级阶段,可以进入良性循环了.相当于2+
1=3.1,2,3可以排成一个最简单的数列,但是可以演绎至无穷. 有了1只是有了概念,有了1+1=2才有了数学,有了2+1=3才开始了数学的无穷变化.
物理学与1+1=2的关系 人类认识世界的过程是一个由感性到理性,有已知到未知的过程.
在数学当中已知1、2、3,则可以至于无穷,什么是物理学当中的1、2、3呢?通常它们代表着:质量、长度、时间等基本物理概念相当于1,它们是组成物理学宏伟大厦的
砖和瓦;牛顿运动定律相当于2,它使我们有了真正的物理学和科学的物理分析方法;力学的相对性原理相当于3,使牛顿运动定律可以广泛应用.在经典物理学中一切都是确定
无疑的,有了已知条件,我们就可以推出未知.当年徐迟的一篇报告文学,中国人知道了陈景润和歌德巴赫猜想.
那么,什么是歌德巴赫猜想呢? 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士.1742年,哥德巴赫在
教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和.如6=3+3,12=5+7等等.公元1742年6月7日哥德巴赫写信给当时的大数学家
欧拉,提出了以下的猜想: (a)任何一个>=6之偶数,都可以表示成两个奇质数之和. (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和. 这就是着名的
哥德巴赫猜想.欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明.叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起
了许多数学家的注意.从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3,
8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18
= 5 + 13, ……等等.有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立.但严格的数学证明尚待数学家的努力.
从此,这道著名的数学难题引起了世界上成千上万数学家的注意.200年过去了,没有人证明它.哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠".
人们对哥德巴赫猜想难题的热情,历经两百多年而不衰.世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解. 到了20世纪20年代,才有人开始向它
靠近.1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99).这种缩小包围圈的办法很管用,科学家们于是从(9十
9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想.
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.”
通常都简称这个结果为大偶数可表示为 “1 + 2”的形式. 在陈景润之前,关於偶数可表示为 s个质数的乘积与t个质数的乘积之和(简称“s +
t”问题)之进展情况如下: 1920年,挪威的布朗证明了‘“9 + 9”. 1924年,德国的拉特马赫证明了“7 + 7”.
1932年,英国的埃斯特曼证明了“6 + 6”. 1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 +
366”. 1938年,苏联的布赫夕太勃证明了“5 + 5”. 1940年,苏联的布赫夕太勃证明了“4 + 4”. 1948年,匈牙利的瑞尼证明了“1 +
c”,其中c是一很大的自然数. 1956年,中国的王元证明了“3 + 4”. 1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”.
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”. 1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及
意大利的朋比利证明了“1 + 3 ”. 1966年,中国的陈景润证明了 “1 + 2 ”.
从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年.
自"陈氏定理"诞生至今的30多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功.
布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和:
2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-
2i),i=1,2,…;3j和(2n-3j),j= 2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2
都是素数,即得n=p1+p2,这样哥德巴赫猜想就被证明了.前一部分的叙述是很自然的想法.关键就是要证明'至少还有一对自然数未被筛去'.目前世界上谁都未能对这
一部分加以证明.要能证明,这个猜想也就解决了. 1+1=?不就是等于二吗?是的,的确是这样.但是这个二却不可小觊.2可以分解成1+1、0.1+1.9、0.5
+1.5……1里面的成分是:0.5+0.5、0.1+0.9、0.56+0.44…换个角度1+1虽然等于二但是却有许多含义.譬如说1+1=2分解后就是:0.5
+0.5+1=2
其中0.5+0.5=天生+后天培养;1=汗水.这是十分容易理解的一个公式.当然要是换个角度,聪明的人就知道凡事无绝对.答案不可能只有1个,含义亦是如此.
1+1从脑筋急转来说也可以等于一个数字“王”、田、甲.