数学
二次函数销售问题超市经销一种成本为40元/千克的水产品,市场调查发现按50元/千克销售,一个月能售出500千克,销售单价每涨一元,月销售量就减少10千克,针对这种水产品的销售情况请解答以下问题1)设销售单价定位55元/千克,求月销售量和月销售利润2)设销售单价为x元/千克,月销售利润为y元.写出y和x关系式(不写x取值范围)3)商店想在月销售成本不超过10000的情况下.使利润达8000元.那么单价应定为多少?

2019-06-02

二次函数销售问题
超市经销一种成本为40元/千克的水产品,市场调查发现按50元/千克销售,一个月能售出500千克,销售单价每涨一元,月销售量就减少10千克,针对这种水产品的销售情况请解答以下问题
1)设销售单价定位55元/千克,求月销售量和月销售利润
2)设销售单价为x元/千克,月销售利润为y元.写出y和x关系式(不写x取值范围)
3)商店想在月销售成本不超过10000的情况下.使利润达8000元.那么单价应定为多少?
优质解答
1)设销售单价定位55元/千克,求月销售量和月销售利润
当销售单价为55元时,月销售量为
500-(55-50)×10=450(千克)
月销售利润为
(55-50)×450=6750(元)
2)设销售单价为x元/千克,月销售利润为y元.写出y和x关系式(不写x取值范围)
设销售单价定为x元,则每千克水产品的利润为(x-40)元,每千克涨价(x-50)元,月销售量为[500-(x-50)×10]千克,根据题意,得
y=(x-40)[500-(x-50)×10]
整理,得
y=x^2-140x+12800
3)商店想在月销售成本不超过10000的情况下.使利润达8000元.那么单价应定为多少?
根据第二步做出的方程
x^2-140x+12800=8000
解得
x1=60,x2=80
所以销售单价应定为每千克60元或80元,都符合实际问题
1)设销售单价定位55元/千克,求月销售量和月销售利润
当销售单价为55元时,月销售量为
500-(55-50)×10=450(千克)
月销售利润为
(55-50)×450=6750(元)
2)设销售单价为x元/千克,月销售利润为y元.写出y和x关系式(不写x取值范围)
设销售单价定为x元,则每千克水产品的利润为(x-40)元,每千克涨价(x-50)元,月销售量为[500-(x-50)×10]千克,根据题意,得
y=(x-40)[500-(x-50)×10]
整理,得
y=x^2-140x+12800
3)商店想在月销售成本不超过10000的情况下.使利润达8000元.那么单价应定为多少?
根据第二步做出的方程
x^2-140x+12800=8000
解得
x1=60,x2=80
所以销售单价应定为每千克60元或80元,都符合实际问题
相关问答