数学
初中数学思想主要有哪些?

2019-04-15

初中数学思想主要有哪些?
优质解答
初中数学思想方法
二、认识初中数学思想方法.
初中数学中蕴含多种的数学思想方法,但最基本的数学思想方法是数形结合的思想,分类讨论思想、转化的思想、函数的思想,突出这些基本思想方法,就相当于抓住了中学数学知识的精髓.
1、数形结合的思想 数形结合是一种重要的数学思想方法,其应用广泛,灵活巧妙.”数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括 [1].在数学教学中,许多定律、定理及公式等常可以用图形来描述.而利用图形的直观,则可以由抽象变具体,模糊变清晰,使数学问题的难度下降,从而可以从图形中找到有创意的解题思路.如代数列方程解应用题中的行程问题,往往借助几何图形,靠图形感知来”支持”抽象的思维过程,从而寻求数量之间的相依关系.例如:小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米,如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明追上小彬?此时,我们可画出如下的线路图:
依据线路图,我们可以找出其中的等量关系
S小明=S小彬+10,然后设未知数列方程即可.
2、分类讨论的思想 分类讨论思想是根据数学对象的本质属性的相同点和不同点,将数学对象区分为不同种类的数学思想.对数学内容进行分类,可以降低学习难度,增强学习的针对性.因此,在教学中应启发学生按不同的情况去对同一对象进行能够分类,帮助他们掌握好分类的方法原则,形成分类的思想.如当 取何实数时,对 的值的分类讨论:当 时,;当 <3时,.
3、转化思想 数学问题的解决过程就是一系列转化的过程,中学数学处处都体现出转化的思想,如化繁为简、化难为易,化未知为已知,化高次为低次等,是解决问题的一种最基本的思想.因此在教学中,首先要让学生认识到常用的很多数学方法实质就是转化的方法,从而确信转化是可能的,而且是必须的;其次结合具体的教学内容进行有意识的训练,使学生掌握这一具有重大价值的思想方法.例如:当 时,求 的值.该题可以采用直接代入法,但是更简易的方法应为先化简再求值,此时原式 .
4、函数的思想 辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学.华东师大版教材把函数思想已经渗透到初一、二教材的各个内容之中.因此,教学上要有意识、有计划、有目的地培养函数的思想方法.例如:进行求代数式的值的教学时,通过强调解题的第一步“当……时”的依据,渗透函数的思想方法--字母每取一个值,代数式就有唯一确定的值.如代数式x2-4中,当x=1时,则x2-4=-3;当x=2,则x2-4=0……通过引导学生对以上问题的讨论,将静态的知识模式演变为动态的讨论,这样实际上就赋予了函数的形式,在学生的头脑中就形成了以运动的观点去领会,这就是发展函数思想的重要途径.
这是四个最常用的
其他还有:归纳、演绎等等思想
初中数学思想方法
二、认识初中数学思想方法.
初中数学中蕴含多种的数学思想方法,但最基本的数学思想方法是数形结合的思想,分类讨论思想、转化的思想、函数的思想,突出这些基本思想方法,就相当于抓住了中学数学知识的精髓.
1、数形结合的思想 数形结合是一种重要的数学思想方法,其应用广泛,灵活巧妙.”数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括 [1].在数学教学中,许多定律、定理及公式等常可以用图形来描述.而利用图形的直观,则可以由抽象变具体,模糊变清晰,使数学问题的难度下降,从而可以从图形中找到有创意的解题思路.如代数列方程解应用题中的行程问题,往往借助几何图形,靠图形感知来”支持”抽象的思维过程,从而寻求数量之间的相依关系.例如:小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米,如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明追上小彬?此时,我们可画出如下的线路图:
依据线路图,我们可以找出其中的等量关系
S小明=S小彬+10,然后设未知数列方程即可.
2、分类讨论的思想 分类讨论思想是根据数学对象的本质属性的相同点和不同点,将数学对象区分为不同种类的数学思想.对数学内容进行分类,可以降低学习难度,增强学习的针对性.因此,在教学中应启发学生按不同的情况去对同一对象进行能够分类,帮助他们掌握好分类的方法原则,形成分类的思想.如当 取何实数时,对 的值的分类讨论:当 时,;当 <3时,.
3、转化思想 数学问题的解决过程就是一系列转化的过程,中学数学处处都体现出转化的思想,如化繁为简、化难为易,化未知为已知,化高次为低次等,是解决问题的一种最基本的思想.因此在教学中,首先要让学生认识到常用的很多数学方法实质就是转化的方法,从而确信转化是可能的,而且是必须的;其次结合具体的教学内容进行有意识的训练,使学生掌握这一具有重大价值的思想方法.例如:当 时,求 的值.该题可以采用直接代入法,但是更简易的方法应为先化简再求值,此时原式 .
4、函数的思想 辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学.华东师大版教材把函数思想已经渗透到初一、二教材的各个内容之中.因此,教学上要有意识、有计划、有目的地培养函数的思想方法.例如:进行求代数式的值的教学时,通过强调解题的第一步“当……时”的依据,渗透函数的思想方法--字母每取一个值,代数式就有唯一确定的值.如代数式x2-4中,当x=1时,则x2-4=-3;当x=2,则x2-4=0……通过引导学生对以上问题的讨论,将静态的知识模式演变为动态的讨论,这样实际上就赋予了函数的形式,在学生的头脑中就形成了以运动的观点去领会,这就是发展函数思想的重要途径.
这是四个最常用的
其他还有:归纳、演绎等等思想
相关标签: 初中 数学 思想 主要
相关问答