优质解答
初三数学知识点
第一章 \x09二次根式
1 二次根式:形如 ( )的式子为二次根式;
性质:( )是一个非负数;
;
.
2 二次根式的乘除:;
.
3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并.
4 海伦-秦九韶公式:,S是三角形的面积,p为 .
第二章 一元二次方程
1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程.
2 一元二次方程的解法
配方法:将方程的一边配成完全平方式,然后两边开方;
公式法:
因式分解法:左边是两个因式的乘积,右边为零.
3 一元二次方程在实际问题中的应用
4 韦达定理:设 是方程 的两个根,那么有
第三章 旋转
1 图形的旋转
旋转:一个图形绕某一点转动一个角度的图形变换
性质:对应点到旋转中心的距离相等;
对应点与旋转中心所连的线段的夹角等于旋转角
旋转前后的图形全等.
2 中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;
中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;
3 关于原点对称的点的坐标
第四章 圆
1 圆、圆心、半径、直径、圆弧、弦、半圆的定义
2 垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;
平分弦的直径垂直弦,并且平分弦所对的两条弧.
3 弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
4 圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径.
5 点和圆的位置关系
点在圆外
点在圆上 d=r
点在圆内 dR+r
外切 d=R+r
相交 R-r
初三数学知识点
第一章 \x09二次根式
1 二次根式:形如 ( )的式子为二次根式;
性质:( )是一个非负数;
;
.
2 二次根式的乘除:;
.
3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并.
4 海伦-秦九韶公式:,S是三角形的面积,p为 .
第二章 一元二次方程
1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程.
2 一元二次方程的解法
配方法:将方程的一边配成完全平方式,然后两边开方;
公式法:
因式分解法:左边是两个因式的乘积,右边为零.
3 一元二次方程在实际问题中的应用
4 韦达定理:设 是方程 的两个根,那么有
第三章 旋转
1 图形的旋转
旋转:一个图形绕某一点转动一个角度的图形变换
性质:对应点到旋转中心的距离相等;
对应点与旋转中心所连的线段的夹角等于旋转角
旋转前后的图形全等.
2 中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;
中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;
3 关于原点对称的点的坐标
第四章 圆
1 圆、圆心、半径、直径、圆弧、弦、半圆的定义
2 垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;
平分弦的直径垂直弦,并且平分弦所对的两条弧.
3 弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
4 圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径.
5 点和圆的位置关系
点在圆外
点在圆上 d=r
点在圆内 dR+r
外切 d=R+r
相交 R-r