数学
小学数学行程和工程问题

2019-06-22

小学数学行程和工程问题
优质解答
行程问题1、东西两镇相距16千米,甲、乙各从一镇以等速相背而行,甲先出发一段时间,乙出发3小时后两个人相距80千米.这时乙行的路占甲行3/5,求甲比乙提早几小时出发?
2、甲、乙两人分别从东西二镇同时相向而行,甲时速12千米,乙时速8千米.当甲抵达西镇时,乙又用2小时15分抵达东镇.求两人相遇时各行了多大距离?
3、甲乙两从某地相背而行,甲要行的距离为乙的3倍.甲时速为12千米,乙时速为9千米,今甲比乙提早2小时出发,当乙到达目的地时,甲距其目的地仍有36千米.两地相距多少千米?
4、甲车由东城行向西城,每小时行18千米,乙车由西城走向东城,每小时行16千米,甲车比乙车迟一小时出发,而他们恰好在两城中点处相遇.两城相距多少千米? 在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题.也叫行程问题.
行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:
距离=速度×时间
速度=距离÷时间
时间=距离÷速度
按运动方向,行程问题可以分成三类:
1、 相向运动问题(相遇问题)
2、 同向运动问题(追及问题)
3、 背向运动问题(相离问题)
1、 相向运动问题
十、行程应用题
相向运动问题(相遇问题),是指地点不同、方向相对所形成的一种行程问题.两个运动物体由于相向运动而相遇.
解答相遇问题的关键,是求出两个运动物体的速度之和.
基本公式有:
两地距离=速度和×相遇时间
相遇时间=两地距离÷速度和
速度和=两地距离÷相遇时间
例1、 两列火车同时从相距540千米的甲乙两地相向而行,经过3.6小时相遇.已知客车每小时行80千米,货车每小时行多少千米?
例2、 两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行.甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇.求从出发到相遇经过几小时?
2、同向运动问题(追及问题)
十、行程应用题
两个运动物体同向而行,一快一慢,慢在前快在后,经过一定时间快的追上慢的,称为追及.
解答追及问题的关键,是求出两个运动物体的速度之差.基本公式有:
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
例1、 甲乙两人在相距12千米的AB两地同时出发,同向而行.甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍.几小时后乙能追上甲?
12÷(4×3-4)=1.5小时
例2、 一个通讯员骑摩托车追赶前面部队乘的汽车.汽车每小时行48千米,摩托车每小时行60千米.通讯员出发后2小时追上汽车.通讯员出发的时候和部队乘的汽车相距多少千米?
要求距离差,需要知道速度差和追及时间.
距离差=速度差×追及时间
(60-48)×2=24千米
例3、 一个人从甲村步行去乙村 ,每分钟行80米.他出发以后25分钟,另一个人骑自行车追他,10分钟追上.骑自行车的人每分钟行多少米?
要求“骑自行车的人每分钟行多少米”,需要知道“两人的速度差”;要求“两人的速度差”需要知道距离差和追及时间
80×25÷10+80=280米

3、背向运动问题(相离问题)
十、行程应用题
背向运动问题(相离问题),是指地点相同或不同,方向相反的一种行程问题.两个运动物体由于背向运动而相离.
解答背向运动问题的关键,是求出两个运动物体共同走的距离(速度和).基本公式有:
两地距离=速度和×相离时间
相离时间=两地距离÷速度和
速度和=两地距离÷相离时间
例1、 甲乙两车同时同地相反方向开出,甲车每小时行40千米,乙车乙车每小时快5.5千米.4小时后,两车相距多少千米?
例2、 甲乙两车从AB两地的中点同时相背而行.甲车以每小时40千米的速度行驶,到达A地后又以原来的速度立即返回,甲车到达A地时,乙车离B地还有40千米.乙车加快速度继续行驶,到达B地后也立即返回,又用了7.5小时回到中点,这时甲车离中点还有20千米.乙车加快速度后,每小时行多少千米?
乙车在7.5小时内行驶了(40×7.5+40+20)千米的路程,这样可以求得乙车加快后的速度.
(40×7.5+40+20)÷7.5=48(千米)
例3、 甲乙两车同时同地同向而行,3小时后甲车在乙车前方15千米处;如果两车同时同地背向而行,2小时后相距150千米.甲乙两车每小时各行多少千米?
根据“3小时后甲车在乙车前方15千米处”,可求得两车的速度差;根据“两车同时同地背向而行,2小时后相距150千米”,可求得两车的速度和.从而求得甲乙两车的速度(和差问题)
工程问题:
15 工程问题
【含义】 工程问题主要研究工作量、工作效率和工作时间三者之间的关系.这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量.

【数量关系】 解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式.
工作量=工作效率×工作时间
工作时间=工作量÷工作效率
工作时间=总工作量÷(甲工作效率+乙工作效率)

【解题思路和方法】 变通后可以利用上述数量关系的公式.

例1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?
解 题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”.由于甲队独做需10天完成,那么每天完成这项工程的 1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/10+1/15).
由此可以列出算式: 1÷(1/10+1/15)=1÷1/6=6(天)
答:两队合做需要6天完成.

例2 一批零件,甲独做6小时完成,乙独做8小时完成.现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?
解 设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8).因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以
(1)每小时甲比乙多做多少零件?
24÷[1÷(1/6+1/8)]=7(个)
(2)这批零件共有多少个?
7÷(1/6-1/8)=168(个)
答:这批零件共有168个.
解二 上面这道题还可以用另一种方法计算:
两人合做,完成任务时甲乙的工作量之比为 1/6∶1/8=4∶3
由此可知,甲比乙多完成总工作量的 4-3 / 4+3 =1/7
所以,这批零件共有 24÷1/7=168(个)

例3 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成.现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?
解 必须先求出各人每小时的工作效率.如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是
60÷12=5 60÷10=6 60÷15=4
因此余下的工作量由乙丙合做还需要
(60-5×2)÷(6+4)=5(小时)
答:还需要5小时才能完成.

例4 一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管.当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?
解 注(排)水问题是一类特殊的工程问题.往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率.
要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水.为此需要知道进水管、排水管的工作效率及总工作量(一池水).只要设某一个量为单位1,其余两个量便可由条件推出.
我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知
每小时的排水量为 (1×2×15-1×4×5)÷(15-5)=1
即一个排水管与每个进水管的工作效率相同.由此可知
一池水的总工作量为 1×4×5-1×5=15
又因为在2小时内,每个进水管的注水量为 1×2,
所以,2小时内注满一池水
至少需要多少个进水管? (15+1×2)÷(1×2)
=8.5≈9(个)
答:至少需要9个进水管.
行程问题1、东西两镇相距16千米,甲、乙各从一镇以等速相背而行,甲先出发一段时间,乙出发3小时后两个人相距80千米.这时乙行的路占甲行3/5,求甲比乙提早几小时出发?
2、甲、乙两人分别从东西二镇同时相向而行,甲时速12千米,乙时速8千米.当甲抵达西镇时,乙又用2小时15分抵达东镇.求两人相遇时各行了多大距离?
3、甲乙两从某地相背而行,甲要行的距离为乙的3倍.甲时速为12千米,乙时速为9千米,今甲比乙提早2小时出发,当乙到达目的地时,甲距其目的地仍有36千米.两地相距多少千米?
4、甲车由东城行向西城,每小时行18千米,乙车由西城走向东城,每小时行16千米,甲车比乙车迟一小时出发,而他们恰好在两城中点处相遇.两城相距多少千米? 在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题.也叫行程问题.
行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:
距离=速度×时间
速度=距离÷时间
时间=距离÷速度
按运动方向,行程问题可以分成三类:
1、 相向运动问题(相遇问题)
2、 同向运动问题(追及问题)
3、 背向运动问题(相离问题)
1、 相向运动问题
十、行程应用题
相向运动问题(相遇问题),是指地点不同、方向相对所形成的一种行程问题.两个运动物体由于相向运动而相遇.
解答相遇问题的关键,是求出两个运动物体的速度之和.
基本公式有:
两地距离=速度和×相遇时间
相遇时间=两地距离÷速度和
速度和=两地距离÷相遇时间
例1、 两列火车同时从相距540千米的甲乙两地相向而行,经过3.6小时相遇.已知客车每小时行80千米,货车每小时行多少千米?
例2、 两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行.甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇.求从出发到相遇经过几小时?
2、同向运动问题(追及问题)
十、行程应用题
两个运动物体同向而行,一快一慢,慢在前快在后,经过一定时间快的追上慢的,称为追及.
解答追及问题的关键,是求出两个运动物体的速度之差.基本公式有:
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
例1、 甲乙两人在相距12千米的AB两地同时出发,同向而行.甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍.几小时后乙能追上甲?
12÷(4×3-4)=1.5小时
例2、 一个通讯员骑摩托车追赶前面部队乘的汽车.汽车每小时行48千米,摩托车每小时行60千米.通讯员出发后2小时追上汽车.通讯员出发的时候和部队乘的汽车相距多少千米?
要求距离差,需要知道速度差和追及时间.
距离差=速度差×追及时间
(60-48)×2=24千米
例3、 一个人从甲村步行去乙村 ,每分钟行80米.他出发以后25分钟,另一个人骑自行车追他,10分钟追上.骑自行车的人每分钟行多少米?
要求“骑自行车的人每分钟行多少米”,需要知道“两人的速度差”;要求“两人的速度差”需要知道距离差和追及时间
80×25÷10+80=280米

3、背向运动问题(相离问题)
十、行程应用题
背向运动问题(相离问题),是指地点相同或不同,方向相反的一种行程问题.两个运动物体由于背向运动而相离.
解答背向运动问题的关键,是求出两个运动物体共同走的距离(速度和).基本公式有:
两地距离=速度和×相离时间
相离时间=两地距离÷速度和
速度和=两地距离÷相离时间
例1、 甲乙两车同时同地相反方向开出,甲车每小时行40千米,乙车乙车每小时快5.5千米.4小时后,两车相距多少千米?
例2、 甲乙两车从AB两地的中点同时相背而行.甲车以每小时40千米的速度行驶,到达A地后又以原来的速度立即返回,甲车到达A地时,乙车离B地还有40千米.乙车加快速度继续行驶,到达B地后也立即返回,又用了7.5小时回到中点,这时甲车离中点还有20千米.乙车加快速度后,每小时行多少千米?
乙车在7.5小时内行驶了(40×7.5+40+20)千米的路程,这样可以求得乙车加快后的速度.
(40×7.5+40+20)÷7.5=48(千米)
例3、 甲乙两车同时同地同向而行,3小时后甲车在乙车前方15千米处;如果两车同时同地背向而行,2小时后相距150千米.甲乙两车每小时各行多少千米?
根据“3小时后甲车在乙车前方15千米处”,可求得两车的速度差;根据“两车同时同地背向而行,2小时后相距150千米”,可求得两车的速度和.从而求得甲乙两车的速度(和差问题)
工程问题:
15 工程问题
【含义】 工程问题主要研究工作量、工作效率和工作时间三者之间的关系.这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量.

【数量关系】 解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式.
工作量=工作效率×工作时间
工作时间=工作量÷工作效率
工作时间=总工作量÷(甲工作效率+乙工作效率)

【解题思路和方法】 变通后可以利用上述数量关系的公式.

例1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?
解 题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”.由于甲队独做需10天完成,那么每天完成这项工程的 1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/10+1/15).
由此可以列出算式: 1÷(1/10+1/15)=1÷1/6=6(天)
答:两队合做需要6天完成.

例2 一批零件,甲独做6小时完成,乙独做8小时完成.现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?
解 设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8).因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以
(1)每小时甲比乙多做多少零件?
24÷[1÷(1/6+1/8)]=7(个)
(2)这批零件共有多少个?
7÷(1/6-1/8)=168(个)
答:这批零件共有168个.
解二 上面这道题还可以用另一种方法计算:
两人合做,完成任务时甲乙的工作量之比为 1/6∶1/8=4∶3
由此可知,甲比乙多完成总工作量的 4-3 / 4+3 =1/7
所以,这批零件共有 24÷1/7=168(个)

例3 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成.现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?
解 必须先求出各人每小时的工作效率.如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是
60÷12=5 60÷10=6 60÷15=4
因此余下的工作量由乙丙合做还需要
(60-5×2)÷(6+4)=5(小时)
答:还需要5小时才能完成.

例4 一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管.当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?
解 注(排)水问题是一类特殊的工程问题.往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率.
要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水.为此需要知道进水管、排水管的工作效率及总工作量(一池水).只要设某一个量为单位1,其余两个量便可由条件推出.
我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知
每小时的排水量为 (1×2×15-1×4×5)÷(15-5)=1
即一个排水管与每个进水管的工作效率相同.由此可知
一池水的总工作量为 1×4×5-1×5=15
又因为在2小时内,每个进水管的注水量为 1×2,
所以,2小时内注满一池水
至少需要多少个进水管? (15+1×2)÷(1×2)
=8.5≈9(个)
答:至少需要9个进水管.
相关问答