德国著名数学家高斯(Gauss)在上小学时就已求出计算公式1+2+3+…+n=n(n+1)2.这个公式可以用一种叫做“交叉消项求和法”的方法推导如下:在“平方公式”(a+b)2=a2+2ab+b2中,取b=1,得2a+1=(a+1)2-a2.…(*)在(*)中分别取a=1,2,3,…,n,再左右分别相加,得2(1+2+3+…+n)+n×1=(22-12)+(32-22)+(42-32)+…+[n2-(n-1)2]+[(n+1)2-n2]=(n+1)2-1=n2+2n.即1+2+3+…+n=n(n+1)2.
2020-04-29
德国著名数学家高斯(Gauss)在上小学时就已求出计算公式1+2+3+…+n=.
这个公式可以用一种叫做“交叉消项求和法”的方法推导如下:
在“平方公式”(a+b)2=a2+2ab+b2中,
取b=1,得2a+1=(a+1)2-a2.…(*)
在(*)中分别取a=1,2,3,…,n,再左右分别相加,得2(1+2+3+…+n)+n×1=(22-12)+(32-22)+(42-32)+…+[n2-(n-1)2]+[(n+1)2-n2]=(n+1)2-1=n2+2n.
即1+2+3+…+n=.现在请你利用“立方公式”(a+b)3=a3+3a2b+3ab2+b3来推导12+22+32+…+n2的计算公式,要求写出推算过程.注:可以利用已推导的公式1+2+3+…+n=.
优质解答
在立方公式中,取b=1得(a+1)3-a3=3a2+3a+1,
依次取a=1,2,3,…,n-1,n得
23-1=3×12+3×1+1,33-23=3×22+3×2+1,43-33=3×32+3×3+1,…(n+1)3-n3=3×n2+3n+1,
将以上n个式子相加,得(n+1)3-1=3(12+22+32+…+n2)+3(1+2+3+…+n)+n,
∴12+22+32+…+n2==.
在立方公式中,取b=1得(a+1)3-a3=3a2+3a+1,
依次取a=1,2,3,…,n-1,n得
23-1=3×12+3×1+1,33-23=3×22+3×2+1,43-33=3×32+3×3+1,…(n+1)3-n3=3×n2+3n+1,
将以上n个式子相加,得(n+1)3-1=3(12+22+32+…+n2)+3(1+2+3+…+n)+n,
∴12+22+32+…+n2==.