复合函数求导cos(3x)是什么意思?f[g(x)]中,设g(x)=u,则f[g(x)]=f(u),从而(公式):f'[g(x)]=f'(u)*g'(x)呵呵,我们的老师写在黑板上时我一开始也看不懂,那就举个例子吧,耐心看哦!f[g(x)]=sin(2x),则设g(x)=2x,令g(x)=2x=u,则f(u)=sin(u)所以f'[g(x)]=[sin(u)]'*(2x)'=2cos(u),再用2x代替u,得f'[g(x)]=2cos(2x).以此类推y'=[cos(3x)]'=-3sin(x)y'={s
2019-04-08
复合函数求导cos(3x)是什么意思?
f[g(x)]中,设g(x)=u,则f[g(x)]=f(u),
从而(公式):f'[g(x)]=f'(u)*g'(x)
呵呵,我们的老师写在黑板上时我一开始也看不懂,那就举个例子吧,耐心看哦!
f[g(x)]=sin(2x),则设g(x)=2x,令g(x)=2x=u,则f(u)=sin(u)
所以f'[g(x)]=[sin(u)]'*(2x)'=2cos(u),再用2x代替u,得f'[g(x)]=2cos(2x).
以此类推y'=[cos(3x)]'=-3sin(x)
y'={sin(3-x)]'=-cos(x)