优质解答
把两个二元一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组. 有几个方程组成的一组方程叫做方程组.如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组. 二元一次方程定义:一个含有两个未知数,并且未知数的指数都是1的整式方程,叫二元一次方程. 二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组. 二元一次方程的使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 二元一次方程组的二元一次方程组的两个公共解,叫做二元一次方程组的解. 一般解法,消元:将方程组中的未知数个数由多化少,逐一解决. 消元的方法有两种: 代入消元法 例:解方程组 : x+y=5① 6x+13y=89② 由①得 x=5-y③ 把③带入②,得 6(5-y)+13y=89 即 y=59/7 把y=59/7带入③,得 x=5-59/7 即 x=-24/7 ∴ x=-24/7 y=59/7 为方程组的解 我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法. 加减消元法 例:解方程组: x+y=9① x-y=5② ①+② 2x=14 即 x=7 把x=7带入①,得 7+y=9 解,得:y=2 ∴ x=7 y=2 为方程组的解 像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法. 二元一次方程组的解有三种情况: 1.有一组解 如方程组x+y=5① 6x+13y=89② x=-24/7 y=59/7 为方程组的解 2.有无数组解 如方程组x+y=6① 2x+2y=12② 因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解. 3.无解 如方程组x+y=4① 2x+2y=10②, 因为方程②化简后为 x+y=5 这与方程①相矛盾,所以此类方程组无解.
把两个二元一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组. 有几个方程组成的一组方程叫做方程组.如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组. 二元一次方程定义:一个含有两个未知数,并且未知数的指数都是1的整式方程,叫二元一次方程. 二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组. 二元一次方程的使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 二元一次方程组的二元一次方程组的两个公共解,叫做二元一次方程组的解. 一般解法,消元:将方程组中的未知数个数由多化少,逐一解决. 消元的方法有两种: 代入消元法 例:解方程组 : x+y=5① 6x+13y=89② 由①得 x=5-y③ 把③带入②,得 6(5-y)+13y=89 即 y=59/7 把y=59/7带入③,得 x=5-59/7 即 x=-24/7 ∴ x=-24/7 y=59/7 为方程组的解 我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法. 加减消元法 例:解方程组: x+y=9① x-y=5② ①+② 2x=14 即 x=7 把x=7带入①,得 7+y=9 解,得:y=2 ∴ x=7 y=2 为方程组的解 像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法. 二元一次方程组的解有三种情况: 1.有一组解 如方程组x+y=5① 6x+13y=89② x=-24/7 y=59/7 为方程组的解 2.有无数组解 如方程组x+y=6① 2x+2y=12② 因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解. 3.无解 如方程组x+y=4① 2x+2y=10②, 因为方程②化简后为 x+y=5 这与方程①相矛盾,所以此类方程组无解.