读书
有谁知道西工大附中初一数学两篇论文怎么写

2019-06-13

有谁知道西工大附中初一数学两篇论文怎么写
优质解答
你是几班的,呵呵,我也是初一的.
老实说分五步,给你个范文课题学习
1.做一做
(1)
剪掉正方形边长 长方体的容积
1厘米 324立方厘米
2厘米 512立方厘米
3厘米 588立方厘米
4厘米 576立方厘米
5厘米 500立方厘米
6厘米 384立方厘米
7厘米 252立方厘米
8厘米 128立方厘米
9厘米 36立方厘米
10厘米 0立方厘米
(2)
我发现了当剪掉小正方形的边长为10厘米时长方体的容积最小,剪掉小正方形的边长为3厘米时长方体的容积最大.
(3)
当小正方形边长取3厘米时,所得的无盖长方体的容积最大,此时无盖长方体的容积是588立方厘米.
2. 做一做
(1)
剪掉正方形边长 长方体的容积
0.5厘米 180.5立方厘米
1.0厘米 324立方厘米
1.5厘米 433.5立方厘米
2.0厘米 512立方厘米
2.5厘米 562.5立方厘米
3.0厘米 588立方厘米
3.5厘米 591.5立方厘米
4.0厘米 576立方厘米
4.5厘米 544.5立方厘米
5.0厘米 500立方厘米
5.5厘米 445.5立方厘米
6.0厘米 384立方厘米
…… ……

(2)
我发现了当剪掉小正方形的边长为0.5厘米时长方体的容积最小,剪掉小正方形的边长为3.5厘米时长方体的容积最大.而且剪掉正方形边长为整数时,长方体的容积也是整数,剪掉正方形边长为小数时,长方体的容积也是小数.
(3)
当小正方形边长取3.5厘米时,所得的无盖长方体的容积最大,此时无盖长方体的容积是591.5立方厘米.
关于“0”
0,可以说是人类最早接触的数了.我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量.”这样说显然是不正确的.我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点.而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的.2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等.”
“任何数除以0即为没有意义.”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少.一个整体无法分成0份,即“没有意义”.后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数).从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”.
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同.105、2003年中的0指数的空位,不可删去.203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去.0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的.”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人.作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”.
生活中的数学
有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气.而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边.
奇妙的“黄金数”
取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点.这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”.
有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角.据研究发现,这种角度对植物通风和采光效果最佳.
建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数.人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处.音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美.
数0.618…还使优选法成为可能.优选法是一种求最优化问题的方法.如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间.为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止.但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果!
“黄金数”在生活中竟有如此多的实例和运用.或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题.
美妙的轴对称
如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴.
如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称.轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢?
再仔细观察,不难发现有许多艺术品也成轴对称.举个最简单的例子:桥.它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥.个个都呈轴对称.中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称.再说个有名的:北京城的布局.这可是最典型的轴对称布局了.它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称.将轴对称用在艺术上,能使艺术品看上去更优美.
轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的.耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确.可见我们的生活离不开轴对称.
数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完.我认为,生活中的数学能给人带来更多地发现.
不过估计现在也没有用了.那么少的分要写那么多字.
你是几班的,呵呵,我也是初一的.
老实说分五步,给你个范文课题学习
1.做一做
(1)
剪掉正方形边长 长方体的容积
1厘米 324立方厘米
2厘米 512立方厘米
3厘米 588立方厘米
4厘米 576立方厘米
5厘米 500立方厘米
6厘米 384立方厘米
7厘米 252立方厘米
8厘米 128立方厘米
9厘米 36立方厘米
10厘米 0立方厘米
(2)
我发现了当剪掉小正方形的边长为10厘米时长方体的容积最小,剪掉小正方形的边长为3厘米时长方体的容积最大.
(3)
当小正方形边长取3厘米时,所得的无盖长方体的容积最大,此时无盖长方体的容积是588立方厘米.
2. 做一做
(1)
剪掉正方形边长 长方体的容积
0.5厘米 180.5立方厘米
1.0厘米 324立方厘米
1.5厘米 433.5立方厘米
2.0厘米 512立方厘米
2.5厘米 562.5立方厘米
3.0厘米 588立方厘米
3.5厘米 591.5立方厘米
4.0厘米 576立方厘米
4.5厘米 544.5立方厘米
5.0厘米 500立方厘米
5.5厘米 445.5立方厘米
6.0厘米 384立方厘米
…… ……

(2)
我发现了当剪掉小正方形的边长为0.5厘米时长方体的容积最小,剪掉小正方形的边长为3.5厘米时长方体的容积最大.而且剪掉正方形边长为整数时,长方体的容积也是整数,剪掉正方形边长为小数时,长方体的容积也是小数.
(3)
当小正方形边长取3.5厘米时,所得的无盖长方体的容积最大,此时无盖长方体的容积是591.5立方厘米.
关于“0”
0,可以说是人类最早接触的数了.我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量.”这样说显然是不正确的.我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点.而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的.2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等.”
“任何数除以0即为没有意义.”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少.一个整体无法分成0份,即“没有意义”.后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数).从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”.
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同.105、2003年中的0指数的空位,不可删去.203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去.0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的.”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人.作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”.
生活中的数学
有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气.而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边.
奇妙的“黄金数”
取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点.这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”.
有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角.据研究发现,这种角度对植物通风和采光效果最佳.
建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数.人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处.音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美.
数0.618…还使优选法成为可能.优选法是一种求最优化问题的方法.如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间.为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止.但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果!
“黄金数”在生活中竟有如此多的实例和运用.或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题.
美妙的轴对称
如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴.
如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称.轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢?
再仔细观察,不难发现有许多艺术品也成轴对称.举个最简单的例子:桥.它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥.个个都呈轴对称.中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称.再说个有名的:北京城的布局.这可是最典型的轴对称布局了.它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称.将轴对称用在艺术上,能使艺术品看上去更优美.
轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的.耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确.可见我们的生活离不开轴对称.
数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完.我认为,生活中的数学能给人带来更多地发现.
不过估计现在也没有用了.那么少的分要写那么多字.
相关标签: 数学 论文
相关问答