优质解答
质数(又称为素数)就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数或素数
所谓质数或称素数,就是一个正整数,除了本身和 1 以外并没有任何其他因子.例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数.从这个观点可将整数分为两种,一种叫质数,一种叫合成数.(有人认为数目字 1 不该称为质数)著名的高斯「唯一分解定理」说,任何一个整数.可以写成一串质数相乘的积.
质数的性质
被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质.他发现,设Fn=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4294967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数.但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4294967297=641*6700417,并非质数,而是合数.
更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数.目前由于平方开得较大,因而能够证明的也很少.现在数学家们取得Fn的最大值为:n=1495.这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数.质数和费尔马开了个大玩笑!
质数(又称为素数)就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数或素数
所谓质数或称素数,就是一个正整数,除了本身和 1 以外并没有任何其他因子.例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数.从这个观点可将整数分为两种,一种叫质数,一种叫合成数.(有人认为数目字 1 不该称为质数)著名的高斯「唯一分解定理」说,任何一个整数.可以写成一串质数相乘的积.
质数的性质
被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质.他发现,设Fn=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4294967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数.但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4294967297=641*6700417,并非质数,而是合数.
更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数.目前由于平方开得较大,因而能够证明的也很少.现在数学家们取得Fn的最大值为:n=1495.这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数.质数和费尔马开了个大玩笑!