导数与极限之间有什么区别于联系,另外还有积分和微分概念的区别于联系.请简要清晰的说明一下,
2019-05-03
导数与极限之间有什么区别于联系,另外还有积分和微分概念的区别于联系.请简要清晰的说明一下,
优质解答
导数是针对函数而言的,而且必须是连续函数(也可以是分段函数),也就是说只有函数才有导数的感念,一阶导数在此时是函数的斜率.从上面的分析,如果是常熟函数,其导数就是0
而极限是指一个有序数列(有穷或者无穷)或者函数在自变量无限趋近于某一点时函数的值.
积分和微分区别和联系:
按几何讲:
曲线某点的导数就是该点切线的斜率,不指定某点就是斜率与x的关系式;
微分就是在某点处用切线的直线方程近似曲线方程的取值,不指定某点就是所有点满足的关系式;
定积分就是求曲线与x轴所夹的面积;
不定积分就是该面积满足的方程式.
按代数讲:
微分就是求导的过程,积分就是逆向求导
导数是针对函数而言的,而且必须是连续函数(也可以是分段函数),也就是说只有函数才有导数的感念,一阶导数在此时是函数的斜率.从上面的分析,如果是常熟函数,其导数就是0
而极限是指一个有序数列(有穷或者无穷)或者函数在自变量无限趋近于某一点时函数的值.
积分和微分区别和联系:
按几何讲:
曲线某点的导数就是该点切线的斜率,不指定某点就是斜率与x的关系式;
微分就是在某点处用切线的直线方程近似曲线方程的取值,不指定某点就是所有点满足的关系式;
定积分就是求曲线与x轴所夹的面积;
不定积分就是该面积满足的方程式.
按代数讲:
微分就是求导的过程,积分就是逆向求导