优质解答
所谓黎曼函数R(x),是定义在区间0~1上的一个构造函数:当x是有理数p/q(p、q为互质整数)时,R(x)=1/q;当x是无理数时,R(x)=0.黎曼函数是由黎曼进行定义,用来作为数学分析中反例说明函数方面的待证性质的.如:黎曼函数在(0,1)内所有无理数点处连续,在所有有理数点处间断.每一点处都存在着极限,且极限都是0(可见间断点都属第一类中的可去间断点).这个函数在[0,1]上可积,它在[0,1]上的定积分为0,等等.下面将对黎曼函数的间断点是第一类间断点中的可去间断点进行证明.
先证明对于(0,1)中的任意一点a,当x→a时,limR(x)=0,这是因为,对任意正数ε,要使|R(x)-0|>ε成立,x显然不能取为无理数,因为x为无理数时,R(x)=0,不可能让0大于正数ε.而当x为有理数p/q时,R(x)=1/q.而要|R(x)-0|>ε成立,即1/q>ε,q
所谓黎曼函数R(x),是定义在区间0~1上的一个构造函数:当x是有理数p/q(p、q为互质整数)时,R(x)=1/q;当x是无理数时,R(x)=0.黎曼函数是由黎曼进行定义,用来作为数学分析中反例说明函数方面的待证性质的.如:黎曼函数在(0,1)内所有无理数点处连续,在所有有理数点处间断.每一点处都存在着极限,且极限都是0(可见间断点都属第一类中的可去间断点).这个函数在[0,1]上可积,它在[0,1]上的定积分为0,等等.下面将对黎曼函数的间断点是第一类间断点中的可去间断点进行证明.
先证明对于(0,1)中的任意一点a,当x→a时,limR(x)=0,这是因为,对任意正数ε,要使|R(x)-0|>ε成立,x显然不能取为无理数,因为x为无理数时,R(x)=0,不可能让0大于正数ε.而当x为有理数p/q时,R(x)=1/q.而要|R(x)-0|>ε成立,即1/q>ε,q