数学
昨天在一本书上有看到,一道题(数学家们两千年都没有解决的题),居然被一名学生花了一个晚上解出来了.这个学生就是后来的数学王子高斯.题目是这样的:如何用一支圆规和一把没有刻度的尺子,画出一个正17边形?提示:不要用高难度的眼光看待这道题

2019-06-02

昨天在一本书上有看到,一道题(数学家们两千年都没有解决的题),居然被一名学生花了一个晚上解出来了.这个学生就是后来的数学王子高斯.题目是这样的:如何用一支圆规和一把没有刻度的尺子,画出一个正17边形?
提示:不要用高难度的眼光看待这道题
优质解答
将你要画的正17边形的边长为d,它的外接圆的半径为R.
则d和R的关系是Sin(360度/(17*2))=d/(2R)
正17边形的边对应的圆心角度数为360/17,正17边形的一条边和其两个端点与圆心连接的半径成为一个等边三角形;
然后从圆心作出一条垂线到边上,就能得出一个直角三角形,圆心的那个角是圆心角的一半,即360度/(17*2),对边是d/2,斜边是R,所以得出Sin(360度/(17*2))=d/(2R)
最后,根据该公式,如果你想画出一个边长为1厘米的正17边形,则把d=1代入公式,得出R的值.
1、先画一个R半径的圆;
2、用圆规支脚支在圆周的一个点上,取d为半径,交圆周于一点,然后把这两点连起来,就是17边形的一条边了;
3、如此类推,把17条边画完就是一个正17边形了
祝福你
将你要画的正17边形的边长为d,它的外接圆的半径为R.
则d和R的关系是Sin(360度/(17*2))=d/(2R)
正17边形的边对应的圆心角度数为360/17,正17边形的一条边和其两个端点与圆心连接的半径成为一个等边三角形;
然后从圆心作出一条垂线到边上,就能得出一个直角三角形,圆心的那个角是圆心角的一半,即360度/(17*2),对边是d/2,斜边是R,所以得出Sin(360度/(17*2))=d/(2R)
最后,根据该公式,如果你想画出一个边长为1厘米的正17边形,则把d=1代入公式,得出R的值.
1、先画一个R半径的圆;
2、用圆规支脚支在圆周的一个点上,取d为半径,交圆周于一点,然后把这两点连起来,就是17边形的一条边了;
3、如此类推,把17条边画完就是一个正17边形了
祝福你
相关问答