精选问答
(2010•佛山)一般来说,依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做“分类”的思想;将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做“分类讨论”的方法.请依据分类的思想和分类讨论的方法解决下列问题:如图,在△ABC中,∠ACB>∠ABC.(1)若∠BAC是锐角,请探索在直线AB上有多少个点D,能保证△ACD∽△ABC(不包括全等)?(2)请对∠BAC进行恰当的分类,直接写出每一类在直线AB上能保证△ACD∽△ABC(不包括全等)的点D的个数?

2019-04-27

(2010•佛山)一般来说,依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做“分类”的思想;将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做“分类讨论”的方法.请依据分类的思想和分类讨论的方法解决下列问题:
如图,在△ABC中,∠ACB>∠ABC.
(1)若∠BAC是锐角,请探索在直线AB上有多少个点D,能保证△ACD∽△ABC(不包括全等)?
(2)请对∠BAC进行恰当的分类,直接写出每一类在直线AB上能保证△ACD∽△ABC(不包括全等)的点D的个数?
优质解答
(1)①如图1,若点D在线段AB上,由于∠ACB>∠ABC,可以作一个点D满足∠ACD=∠ABC,
使得△ACD∽△ABC;
②如图2,若点D在线段AB的延长线上,则∠ACD>∠ACB>∠ABC,与条件矛盾,因此,这样的点D不存在;(1分)
③如图3,若点D在线段AB的反向延长线上,由于∠BAC是锐角,则∠BAC<90°<∠CAD,不可能有△ACD∽△ABC,因此,这样的点D不存在.
综上所述,这样的点D有一个.
注:③中用“∠CAD是钝角,△ABC中只可能∠ACB是钝角,则∠CAD>∠ACB”说明不存在点D亦可.


(2)若∠BAC为锐角,由(1)知,这样的点D有一个(如图4);
若∠BAC为直角,这样的点D有两个(如图5);
若∠BAC为钝角,这样的点D有1个(如图6).
注:(2)的第一个解答不写不扣分,第二个解答回答“这样的点D有一个”给(1分).
(1)①如图1,若点D在线段AB上,由于∠ACB>∠ABC,可以作一个点D满足∠ACD=∠ABC,
使得△ACD∽△ABC;
②如图2,若点D在线段AB的延长线上,则∠ACD>∠ACB>∠ABC,与条件矛盾,因此,这样的点D不存在;(1分)
③如图3,若点D在线段AB的反向延长线上,由于∠BAC是锐角,则∠BAC<90°<∠CAD,不可能有△ACD∽△ABC,因此,这样的点D不存在.
综上所述,这样的点D有一个.
注:③中用“∠CAD是钝角,△ABC中只可能∠ACB是钝角,则∠CAD>∠ACB”说明不存在点D亦可.


(2)若∠BAC为锐角,由(1)知,这样的点D有一个(如图4);
若∠BAC为直角,这样的点D有两个(如图5);
若∠BAC为钝角,这样的点D有1个(如图6).
注:(2)的第一个解答不写不扣分,第二个解答回答“这样的点D有一个”给(1分).
相关问答