读书
数学是什么可以分几种类行?可以分两种,就是几何和代数!

2019-04-03

数学是什么可以分几种类行?
可以分两种,就是几何和代数!
优质解答
伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断.恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”.根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学.
数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学.
纯粹数学也叫基础数学,专门研究数学本身的内部规律.中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学.纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式.例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系.
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分.应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁.大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科,数学有3个最显著的特征.
高度的抽象性是数学的显著特征之一.数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的.例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可.现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展.根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学.
伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断.恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”.根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学.
数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学.
纯粹数学也叫基础数学,专门研究数学本身的内部规律.中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学.纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式.例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系.
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分.应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁.大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科,数学有3个最显著的特征.
高度的抽象性是数学的显著特征之一.数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的.例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可.现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展.根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学.
相关标签: 数学 种类 几何 代数
相关问答