优质解答
华罗庚:
华罗庚小时候刻苦学习,然而,华罗庚却被叫去看店(卖棉花的铺子).有一次,有个妇女去买棉花,华罗庚正在算一个数学题,那个妇女说要包棉花多少钱?然而勤学的华罗庚却没有听见,就把算的答案答了一遍,那个妇女尖叫起来:“怎么这么贵?”,这时的华罗庚才知道有人来买棉花,就说了价格,那妇女便买了一包棉花走了.华罗庚正想坐下来继续算时,才发现:刚才算题目的草纸被妇女带走了. 这下可急坏了华罗庚,于是不顾一切地去追,一个黄包师傅便让他坐车追,终于追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”,那妇女生气地说:“这可是我花钱买的,可不是你送的”.华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”.正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚. 这时的华罗庚才微微舒了口气,回家后,又计算起来……
泰勒斯:
据说,埃及的大金字塔修成一千多年后,还没有人能够准确的测出它的高度.有不少人作过很多努力,但都没有成功.
一年春天,泰勒斯来到埃及,人们想试探一下他的能力,就问他是否能解决这个难题.泰勒斯很有把握的说可以,但有一个条件——法老必须在场.第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓.泰勒斯来到金字塔前,阳光把他的影子投在地面上.每过一会儿,他就让别人测量他影子的长度,当测量值与他的身高完全吻合时,他立刻在大金字塔在地面的投影处作一记号,然后在丈量金字塔底到投影尖顶的距离.这样,他就报出了金字塔确切的高度.在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理.也就是今天所说的相似三角形定理.
祖冲之:
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
阿基米德:
玛尔凯路率领着船队,从水上进攻叙拉古.他的每只战舰上的士兵都装备着弓箭、投石器和轻镖枪,要把叙拉古的守卫者赶下城去,然后通过架在战舰上的攻城机,让士兵冲进叙拉古.可是,阿基米德做了充分的准备.当敌人的舰队接近的时候,阿基米德就开动他制造的那些巨大的远程投射机器.远程投射机器能把二百多公斤的石块,投射一千多米远(相当于18世纪大炮的射程).这些巨大的石块,象冰雹似地打在战舰上,打得玛尔凯路手忙脚乱,船沉兵死,一片惊慌.玛尔凯路只得急忙忙把剩下的战舰撤走.
玛尔凯路又决定夜间进攻.他以为夜间阿基米德看不远,等舰队到了城下他那些巨大的远程投射机器就用不上了.可是,当玛尔凯路夜间进攻的时候,又倒了大霉.阿基米德短射程的机器开动了,这些机器不断地投掷出短镖枪、石块,使罗马军队又一次遭到沉重打击,连玛尔凯路也差一点丧命.
玛尔凯路不甘心放弃占领叙拉古的企图.他还是催促军队和强迫他的工程师们,继续同阿基米德较量.结果,都是徒劳.有时,罗马把带有攻城机的战舰冲到叙拉古的城下,守城者就把一种挂着“长嘴”的机器开动起来,一块块石头从“长嘴”里倾落下来,不 但把攻城机打得粉碎,而且也把战舰砸个稀烂,使罗马的士兵陷入绝境.有时,还从城上放下一种铁钩,这种铁钩用机器操纵着十分灵活,铁钩能钩住罗马兵船的船头,然后把兵船拉起来,使兵船向一边翻倒,扣进水里.
玛尔凯路使尽了各种进攻手段,都被阿基米德的发明打破了.罗马军队变得胆小如鼠,一看见从墙头上伸出条绳子,就抱头鼠窜拼命逃跑,并叫喊着:“阿基米德又使出一种机器来作弄我们了!”
玛尔凯路最后没有办法了,只得把叙拉古城团团围住,妄图把城里的人困死.他的这种办法,使得阿基米德也无能为力了.罗马 军队一直围困了八个月,最后乘叙拉古人欢度节日,而疏于防范的机会,从一个冷僻的城门偷袭进去,才把叙拉古攻陷.
当罗马军队冲进城的时候,玛尔凯路曾下令不要杀害这位伟大的物理学家.可是那时,阿基米德正在他的实验室里画他的图形.士兵冲进后,脚踏声惊扰了他.这种惊扰,使他惊醒过来,愤怒地喊道:“喂!你弄坏了我的图画,赶快跑开些!”结果,他的愤慨激怒了罗马士兵,阿基米德便死于刀下.
毕达哥斯拉:
毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形瓷砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和[数]之间的关系,于是拿了画笔并且蹲在地板上,选了一块瓷砖以它的对角线 AB为边画一个正方形,他发现这个正方形面积恰好等于两块瓷砖的面积和.他很好奇,于是再以两块瓷砖拼成 的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块瓷砖的面积,也就是以两股为边作正方形面积之和.至此毕达哥拉斯作了大胆的假设: 任何直角三角形,其斜边的平方恰好等于另两边平方之和.那一顿饭,这位古希腊数学大师,视线都一直没有离开地面.
华罗庚:
华罗庚小时候刻苦学习,然而,华罗庚却被叫去看店(卖棉花的铺子).有一次,有个妇女去买棉花,华罗庚正在算一个数学题,那个妇女说要包棉花多少钱?然而勤学的华罗庚却没有听见,就把算的答案答了一遍,那个妇女尖叫起来:“怎么这么贵?”,这时的华罗庚才知道有人来买棉花,就说了价格,那妇女便买了一包棉花走了.华罗庚正想坐下来继续算时,才发现:刚才算题目的草纸被妇女带走了. 这下可急坏了华罗庚,于是不顾一切地去追,一个黄包师傅便让他坐车追,终于追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”,那妇女生气地说:“这可是我花钱买的,可不是你送的”.华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”.正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚. 这时的华罗庚才微微舒了口气,回家后,又计算起来……
泰勒斯:
据说,埃及的大金字塔修成一千多年后,还没有人能够准确的测出它的高度.有不少人作过很多努力,但都没有成功.
一年春天,泰勒斯来到埃及,人们想试探一下他的能力,就问他是否能解决这个难题.泰勒斯很有把握的说可以,但有一个条件——法老必须在场.第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓.泰勒斯来到金字塔前,阳光把他的影子投在地面上.每过一会儿,他就让别人测量他影子的长度,当测量值与他的身高完全吻合时,他立刻在大金字塔在地面的投影处作一记号,然后在丈量金字塔底到投影尖顶的距离.这样,他就报出了金字塔确切的高度.在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理.也就是今天所说的相似三角形定理.
祖冲之:
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
阿基米德:
玛尔凯路率领着船队,从水上进攻叙拉古.他的每只战舰上的士兵都装备着弓箭、投石器和轻镖枪,要把叙拉古的守卫者赶下城去,然后通过架在战舰上的攻城机,让士兵冲进叙拉古.可是,阿基米德做了充分的准备.当敌人的舰队接近的时候,阿基米德就开动他制造的那些巨大的远程投射机器.远程投射机器能把二百多公斤的石块,投射一千多米远(相当于18世纪大炮的射程).这些巨大的石块,象冰雹似地打在战舰上,打得玛尔凯路手忙脚乱,船沉兵死,一片惊慌.玛尔凯路只得急忙忙把剩下的战舰撤走.
玛尔凯路又决定夜间进攻.他以为夜间阿基米德看不远,等舰队到了城下他那些巨大的远程投射机器就用不上了.可是,当玛尔凯路夜间进攻的时候,又倒了大霉.阿基米德短射程的机器开动了,这些机器不断地投掷出短镖枪、石块,使罗马军队又一次遭到沉重打击,连玛尔凯路也差一点丧命.
玛尔凯路不甘心放弃占领叙拉古的企图.他还是催促军队和强迫他的工程师们,继续同阿基米德较量.结果,都是徒劳.有时,罗马把带有攻城机的战舰冲到叙拉古的城下,守城者就把一种挂着“长嘴”的机器开动起来,一块块石头从“长嘴”里倾落下来,不 但把攻城机打得粉碎,而且也把战舰砸个稀烂,使罗马的士兵陷入绝境.有时,还从城上放下一种铁钩,这种铁钩用机器操纵着十分灵活,铁钩能钩住罗马兵船的船头,然后把兵船拉起来,使兵船向一边翻倒,扣进水里.
玛尔凯路使尽了各种进攻手段,都被阿基米德的发明打破了.罗马军队变得胆小如鼠,一看见从墙头上伸出条绳子,就抱头鼠窜拼命逃跑,并叫喊着:“阿基米德又使出一种机器来作弄我们了!”
玛尔凯路最后没有办法了,只得把叙拉古城团团围住,妄图把城里的人困死.他的这种办法,使得阿基米德也无能为力了.罗马 军队一直围困了八个月,最后乘叙拉古人欢度节日,而疏于防范的机会,从一个冷僻的城门偷袭进去,才把叙拉古攻陷.
当罗马军队冲进城的时候,玛尔凯路曾下令不要杀害这位伟大的物理学家.可是那时,阿基米德正在他的实验室里画他的图形.士兵冲进后,脚踏声惊扰了他.这种惊扰,使他惊醒过来,愤怒地喊道:“喂!你弄坏了我的图画,赶快跑开些!”结果,他的愤慨激怒了罗马士兵,阿基米德便死于刀下.
毕达哥斯拉:
毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形瓷砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和[数]之间的关系,于是拿了画笔并且蹲在地板上,选了一块瓷砖以它的对角线 AB为边画一个正方形,他发现这个正方形面积恰好等于两块瓷砖的面积和.他很好奇,于是再以两块瓷砖拼成 的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块瓷砖的面积,也就是以两股为边作正方形面积之和.至此毕达哥拉斯作了大胆的假设: 任何直角三角形,其斜边的平方恰好等于另两边平方之和.那一顿饭,这位古希腊数学大师,视线都一直没有离开地面.