数学
代数几何与解析几何有什么区别?分别都是研究什么内容的?

2019-04-02

代数几何与解析几何有什么区别?分别都是研究什么内容的?
优质解答
用代数的方法研究几何的思想,在继出现解析几何之后,又发展为几何学的另一个分支,这就是代数几何.代数几何学研究的对象是平面的代数曲线、空间的代数曲线和代数曲面.  代数几何学的兴起,主要是源于求解一般的多项式方程组,开展了由这种方程组的解答所构成的空间,也就是所谓代数簇的研究.解析几何学的出发点是引进了坐标系来表示点的位置,同样,对于任何一种代数簇也可以引进坐标,因此,坐标法就成为研究代数几何学的一个有力的工具.
解析几何包括平面解析几何和立体解析几何两部分.平面解析几何通过平面直角坐标系,建立点与实数对之间的一一对应关系,以及曲线与方程之间的一一对应关系,运用代数方法研究几何问题,或用几何方法研究代数问题.17世纪以来,由于航海、天文、力学、军事、生产的发展,以及初等几何和初等代数的迅速发展,促进了解析几何的建立,并被广泛应用于数学的各个分支.在解析几何创立以前,几何与代数是彼此独立的两个分支.解析几何的建立第一次真正实现了几何方法与代数方法的结合,使形与数统一起来,这是数学发展史上的一次重大突破.笛卡尔作为变量数学发展的第一个决定性步骤,解析几何的建立对于微积分的诞生有着不可估量的作用.
用代数的方法研究几何的思想,在继出现解析几何之后,又发展为几何学的另一个分支,这就是代数几何.代数几何学研究的对象是平面的代数曲线、空间的代数曲线和代数曲面.  代数几何学的兴起,主要是源于求解一般的多项式方程组,开展了由这种方程组的解答所构成的空间,也就是所谓代数簇的研究.解析几何学的出发点是引进了坐标系来表示点的位置,同样,对于任何一种代数簇也可以引进坐标,因此,坐标法就成为研究代数几何学的一个有力的工具.
解析几何包括平面解析几何和立体解析几何两部分.平面解析几何通过平面直角坐标系,建立点与实数对之间的一一对应关系,以及曲线与方程之间的一一对应关系,运用代数方法研究几何问题,或用几何方法研究代数问题.17世纪以来,由于航海、天文、力学、军事、生产的发展,以及初等几何和初等代数的迅速发展,促进了解析几何的建立,并被广泛应用于数学的各个分支.在解析几何创立以前,几何与代数是彼此独立的两个分支.解析几何的建立第一次真正实现了几何方法与代数方法的结合,使形与数统一起来,这是数学发展史上的一次重大突破.笛卡尔作为变量数学发展的第一个决定性步骤,解析几何的建立对于微积分的诞生有着不可估量的作用.
相关标签: 代数 几何 解析几何 分别 研究 内容
相关问答