2的(2的n次方)次方加1为质数吗 n为正整数为什么
2019-05-28
2的(2的n次方)次方加1为质数吗 n为正整数
为什么
优质解答
不是.
法国数学家费马于1640年提出了以下猜想:
可以发现
F1=2^(2^1)+1=5
F2=2^(2^2)+1=17
F3=2^(2^3)+1=257
F4=2^(2^4)+1=65537
F5=2^(2^5)+1=4294967297
前4个是质数,因为第5个数实在太大了,费马认为是质数.
由此提出(费马没给出证明),形如Fn=2^(2^n)+1 的数都是质数的猜想.后来人们就把形如2^(2^n)+1的数叫费马数.
1732年,欧拉算出F5=641*6700417,不是质数,宣布了费马的这个猜想不成立,它不能作为一个求质数的公式.以后,人们又陆续找到了不少反例,如n=6时,F6=2^(2^6)+1=274177*67280421310721,不是质数.至今这样的反例共找到了46个,却还没有找到第6个正面的例子,也就是说目前只有n=0,1,2,3,4这5个情况下,Fn才是质数.
不是.
法国数学家费马于1640年提出了以下猜想:
可以发现
F1=2^(2^1)+1=5
F2=2^(2^2)+1=17
F3=2^(2^3)+1=257
F4=2^(2^4)+1=65537
F5=2^(2^5)+1=4294967297
前4个是质数,因为第5个数实在太大了,费马认为是质数.
由此提出(费马没给出证明),形如Fn=2^(2^n)+1 的数都是质数的猜想.后来人们就把形如2^(2^n)+1的数叫费马数.
1732年,欧拉算出F5=641*6700417,不是质数,宣布了费马的这个猜想不成立,它不能作为一个求质数的公式.以后,人们又陆续找到了不少反例,如n=6时,F6=2^(2^6)+1=274177*67280421310721,不是质数.至今这样的反例共找到了46个,却还没有找到第6个正面的例子,也就是说目前只有n=0,1,2,3,4这5个情况下,Fn才是质数.